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ABSTRACT

STEWART, JOHN STEDMAN. A Theoretical and Experimental Study of Wood

Planer Noise and Its Control. (Under the direction of FRANKLIN DELANO

HART and LARRY HERBERT ROYSTER).

A combined analytical and experimental study of wood planer noise

is made and the results applied to the development of practical noise

control techniques. The investigation entails identification of the

dominant mechanisms of sound generation and an analysis is presented

which accurately predicts the governing levels of noise emission. Both

the experimental and theoretical studies are concerned with planing

operations in which the length of the board is much greater than the

width. The study thus applies to workpieces which can structurally be

characterized as beams as opposed to plates.

The dominant source of planer noise is identified as the board

being surfaced, which is set into vibration by the impact of 
cutterhead

knives. This is determined from studies made both in the laboratory

and in the field concerning the effect of board width on the resulting

noise, which indicate a six decibel increase in noise level for each

doubling of board width.

The theoretical development of a model for board vibration defines

the vibrational field set up in the board and serves as a guide for

cutterhead redesign. The relationships governing structural vibration

and the resulting radiation of sound are presented in which the phase

cell concept of beam vibration is combined with classical sound radia-

tion expressions for rectangular pistons. The analytical study con-

solidates previous work on beam radiation and the results are presented

in a unified form. The unified theory is valid over a wide frequency

/



range and has general applicability. The trends deduced from the sound

radiation formulations elucidate the important parameters governing the

radiation of sound and serve as an aid in the design of quieter ma-

chinery.

An extensive experimental program identifies noise sources and the

effect of various parameters on planer noise. Techniques of noise re-

duction are presented along with a discussion of research into several

areas of noise control. The experimental study, in addition to bearing

out the theory, identifies the importance of operational and mainte-

nance variables and has led to the development of practical noise

control techniques which have been implemented on production line ma-

chinery.

/1'
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1. INTRODUCTION

Noisy machinery has been a characteristic of the wood processing

industry for generations. The noise levels in this industry have

steadily increased as a result of added horsepower, accelerated cut-

terhead speeds, increased mechanization, and in general a stepped up

production tempo. Also characteristic of the woodworking industry are

the comparatively small size but numerous plants that produce and

utilize woodworking machinery. The result is an industry with a tre-

mendous noise problem but relatively few individual companies large

enough to mount a full scale noise control program. 'This lack of

support has caused researchers to shy away from the woodworking indus-

try and its problems. A review of current literature on woodworking

machinery noise reveals that while limited work has been done on the

aerodynamic or rotational noise produced by rotating cutterheads,

little if any serious effort has been made to determine the mechanisms

of noise generation during machine operation. Since the more noisy

woodworking machines, such as planers and moulders, are significantly

louder when material is being processed, these studies are of limited

value.

Through a cooperative effort between the Center for Acoustical

Studies at North Carolina State University and Newman Machine Company,

a major manufacturer of woodworking machinery, a research and develop-

ment program was developed that has been directed towards uncovering

ways to reduce noise emission from woodworking machinery. This close

association with a machine manufacturer has unfolded an opportunity to

define a meaningful and interesting problem of value to industry in the-
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area of noise control and machine design. Through such a liaison

effort, an acoustics and vibration problem has been defined and carried

to completion through a theoretical and experimental analysis. The

concepts developed have been successfully designed and implemented into

production line machines.

The type of study described, quite obviously, could not be con-

ducted for all types of woodworking machinery. The type machine se-

lected for detailed study was the industrial wood planer, generally

recognized as a major noise source in the industry. The machine con-

sists basically of a system for feeding lumber on a flat table past a

rotating cutterhead which removes a layer of wood and leaves a smooth

surface. The impacting of a cutterhead knife or tooth on wood stock is

typical of a great number of woodworking machines, Thus, the planer is

considered to be representative of many machines as are the results and

conclusions of this study.

The research program was developed on the premise that a basic

understanding of the noise generation mechanisms is the best way to

arrive at noise control solutions. The theoretical goal of the program

was to develop a mathematical model, in a simple usable form, for the

radiation of.sound from a wood planer. This model was to be used in

identifying the dominant sources of noise as well as the critical

parameters influencing the radiation. This information could then

serve as a guideline for the development of practical noise control

techniques. The practical goals were both short and long term in

nature. The design of retrofit systemis for existing machinery as well

as majpr redesign with noise as Ian important factor were the objectives.
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The analysis carried out in this study was both theoretical and

analytical in nature,although the two study areas were not approached

completely independently. A certain amount of insight was gained by

operating the machine, conducting several preliminary measurements and

making observations. This familiarization with the problem led to the

development of several phases of study, with theory and experiment

interrelated to varying degrees. Chapter 3 deals with the general

familiarization with the problem and the identification of major noise

sources, which served to define the theoretical aspect of the problem.

Chapters 4 and 5 are theoretical in nature and constitute a definition

and analysis of the sound radiation problem. Chapter 6 is essentially

experimental in nature, dealing with the effect of various parameters

on the noise generated as well as actual techniques of coping with the

noise problem. Chapters 7 and 8 summarize the results and "conclusions

of this study. A discussion of noise reduction techniques now in use

or in the final design stage is also presented along with plans for

future study in this area.



2. REVIEW OF LITERATURE

Most of the previous work done on noise in the woodworking indus-

try has been surveyed in a review by J. Howard Smith [28] and a

contract report to the Ministry of Technology prepared by Sound Research

Laboratories [4]. The object of both studies was to seek out and eval-

uate all current references on noise and vibration in woodworking ma-

chinery with special emphasis on planers and moulders. The literature

reviewed deals primarily with aerodynamic (rotational) noise which

results when a cutterhead is rotated near stationary surfaces. The

noise produced when the machine is planing, which is usually signifi-

cantly higher than the idling noise, has not been examined in detail.,

The rotational noise was studied by Cox (7] in a report which

identified the nearness of feed tables to the rotating cutterhead as a

critical parameter. Pahlitzch [25] and Liegman [19] expanded on this

work. Thunell [37] investigated the effect of slitting table lips near

the cutterhead. Kuleshov and Grinkov [18] compared the noise levels

produced by square and helical cutterhead knives and observed an appre-

ciable reduction in the noise level for the helical cutterhead,

Chizhevskij and Shkalenko [5] found that modifications of table lips

reduced noise levels during machine idle but were ineffective during

the cutting operation. Schmutzler [27] observed that the noise level

for machine idle increased as the fourth power of cutterhead speed and

indicated the importance of board vibration in the noise generated by

planers. Several authors have reported a significant increase in the

noise levels produced by planers when cutting as opposed to idling.

Mazur and Kovtun [23] carried out a series of experiments on a planer,



dealing with numerous parameters including board geometry, and observed

an increase in noise level with increasing board width. Kozyakov [17]

made an experimental study of planer noise in which he identified the

major noise source as rotational noise produced by the cutterheads.

The literature dealing with noise abatement is concentrated in the

areas of acoustic enclosures and cutterhead redesign. Greenwood [10]

suggested an enclosure design for a planer. Schmutzer [27] also sug-

gested improvement in machine design to reduce noise at the source.

Stewart and Hart [34] give an experimental evaluation of planer noise

and its control. Details of enclosure construction for woodworking

machinery are outlined by Stewart [33].

The modal analysis technique presented in Chapter 4 was applied to

periodically excited beams by Barnoski [1) using Fourier transform tech-

niques. Random excitations were also considered in the study. The

phase cell concept of structural vibration has been considered by Smith

[29], Lyon [20], Maidanik [22], and Lyon and Maidanik [21]. Smith and

Lyon [30] address themselves to the overall problem of sound and struc-

tural vibrationusing approximate formulations,

The determination of sound power levels from a number of sound

pressure level measurements is outlined for various environments by

Hart and Stewart [11]. The effects of particular environments on sound

pressure and sound power levels is also discussed in detail by Beranek

[2].
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3. DEFINITION OF THE NOISE PROBLEM IN WOOD PLANERS

3.1 Introduction

In order to define the noise problem for wood planers it was

necessary to observe the operation of the machine, since a general

understanding of the type of noise produced is required before design-

ing an experimental procedure. The sources of planer noise are deter-

mined and the identification of dominant noise sources is accomplished

through energy considerations. A correlation study is utilized to

delineate board radiation as the probable dominant source. The board

width is identified as the most important geomnetric parameter since

noise levels are observed to increase as board width increases.

3.2 The Planing Operation

Planers typically fall into the broad categories of; (a) roughing

type planers, Figure 3.1, which usually surface more than one face of

the material, and (b) cabinet type planers, Figure 3.2, which usually

surface only one face. For several reasons, including cost and labora-

tory space, a cabinet type planer was selected for a detailed study of

planer noise generation. The roughing planer differs considerably from

the single surfacer in appearance, but removes wood from the board in

much the same manner. Thus, the basic mechanics of the planing opera-

tion are similar for both machines, the major differences being cutter-

head geometry, number of knives and proximity of the cutterhead to

stationary surfaces such as feed beds. The cutterhead geometry defines

the nature of the impact of the cutteirhead knives on the wood stock,
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while the location of the cutterhead would be expected to affect the

rotational noise produced by the machine.

3.2.1 Sources of Planer Noise

From a basic.consideration of the possible noise sources for the

planer of Figure 3.2, the following emerge:

(1) Noise produced due to the high vibration level of the board

being surfaced. The vibration is caused by the periodic impact of the

cutterhead knives upon the surface of the board,

(2) Noise resulting from the.vibration of the anvil structure

directly opposite the cutterhead. Vibratory energy is transmitted

directly through the board and into.the anvil and is dissipated in the

anvil or transmitted on to another component of the machine, The amount

of radiation and the frequency characteristics are dependent upon the.

geometry of the anvil as well as the energy transmitted from the board

to the anvil.

(3) Rotational noise resulting from the interaction of the cut-

terhead with the air in the proximity of stationary surfaces such as

the anvil and feed beds. This is primarily responsible for machine

idle noise and is typically referred to as "siren noise",

(4) Noise produced by the electric motors, This noise can

dominate the idling noise in some machines (especially high frequency

motors).

(5) Noise produced by the dust collection system, This includes

sound radiated from the dust hood due to particle (chip) impact, cavity

resonance, and vibration transmitted'directly from the machine.
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(6) Noise is also produced by other vibrating surfaces such as

housings and feed beds. The means by which this vibratory energy

spreads throughout the machine is (a) transmission from the anvil, and

(b) transmission back through the cutterhead and subsequently through-

out the machine.

(7) Noise produced by the drive train system.

3.2.2 Energy Considerations

In most cases the noise produced while the machine is operating is

substantially greater than that produced while the machine is idling.

This increase in noise level is related to the impact of the cutterhead

knives on the material being surfaced. When a cutter knife makes con-

tact with a board, a certain amount of energy is transferred from the

cutterhead into the board. This energy is associated with the force

required to remove a chip from the board and depends on a great number

of parameters, including the hardness of the board being cut and the

sharpness of the knives. A portion of this energy is distributed

throughout the board causing vibration, while part is transmitted

through the board and into the anvil structure below the cutterhead.

The energy that is transferred into the board is transmitted internally

throughout the board and.is dissipated primarily by (1) internal damp-

ing, and (2) the generation of sound. Figure 3.4 is an energy flow

diagram for the system depicted in Figure 3.3,

3.2.3 Identification of the Dominant Noise Source

To determine the dominant source of planer noise, a series of

sound.pressure level and vibration mt:asurements were conducted. The
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sound pressure level spectrum, shown in Figure 3.5, indicates the

presence of a blade passage frequency of 240 Hz, which corresponds to

a four knife cutterhead rotating at 3600 RPM. Harmonics of 240 Hz

(240 times n, n=1,2,3...) are also present over an extended frequency

range, indicative of sound produced by structural vibration as opposed

to aerodynamically generated sound. From Figure 3.4 it is noted that

considerable energy may be stored in the board being machined in the

form of a reverberant vibrational field. Figure 3.6 shows the vibration

(acceleration) spectrum obtained when a transducer is attached directly

to the board during the planing operation. Again the blade passage

frequency of 240 Hz and the harmonics are present. The excellent cor-

relation between the sound and vibration narrow band spectra suggests

that board radiation is a dominant noise generating mechanism, The

dominance of board radiation as a noise source for the planer is evident

experimentally from a study of the effect of various board parameters

on.the radiated noise. Of the numerous parameters that influence the

radiation, board width was found to have the most direct effect on the

noise levels produced. In general the efficiency of the board as a

sourceof sound is related to the surface area and mean-square velocity

of the board itself. This surface area increases with both board width

and length. The length, however, governs the energy distribution in

the board and consequently does not directly affect the resulting noise

levels. This theoretical principle involving source strength for a

vibrating surface was evident experimentally as shown in Figure 3,7.

The sound pressure level at a particular point is observed to increase

six decibels for each doubling of boerd width. This important result,
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which is discussed in detail in Chapter 5, identifies board radiation

as the dominant source of noise for the planer under study. This

increase in sound pressure level has been observed for numerous planing

operations for roughing and cabinet type planers,
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4. THEORETICAL DEVELOPMENT OF A MODEL FOR BOARD VIBRATION

4.1 Introduction

Board radiation has been identified as the major noise source when

the machine is in operation. In order to study the radiation of sound

from such a vibrating structure, a detailed analysis of the structural

vibration field is necessary. Since the response of the board to a

given input excitation is governed by the frequency composition of the

exciting force and the resonant frequencies of the board itself, such

an analysis is justified. The resulting equations of motion for the

board give valuable information regarding cutterhead impact character-

istics as well as defining the board radiation field. The governing

differential equation of motion is solved subject to simply supported

boundary conditions using the technique of modal analysis. The solu-

tion to the vibration problem is written in terms of Fourier trans-

forms since the Fourier spectrum is of prime interest. A specific

solution is obtained for the special case of periodic excitation which

is typical of wood planers.

4.2 The Governing Differential Equation of Motion

Board vibration can be modeled by considering a uniform slender

beam. The location of the forcing function F(x,t) is arbitrary and it

is assumed that the boundary constraints are conservative, i.e., no

work is done at the boundaries. The constraints are also assumed to

maintain line contact with the beam so that reflected waves from the

constraints can be neglected. The asp3umption of no boundary work is

not always true, but facilitates calc'ilations.
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For the undamped system, the governing differential equation from

simple beam theory can be written as

4 2
Elgc ax +P &ba2 y (xt) =-F(x,t) (4.1)

c ax4 b at2

where

E = modulus of elasticity,

I = area moment of inertia of cross section,

pbo = mass per unit length of the beam,

y = lateral displacement,

x = coordinate along the beam length,

t = real time,

gc = acceleration due to gravity.

In equation (4.1) it is assumed that the system is a uniform,

linear, lightly damped, continuous elastic structure excited by a

forcing function dependent on space and time. The effects of rotary

inertia and shear deformation have been neglected and pb 0, E, and

I are assumed to be constant.

4.3 Consideration of Boundary Conditions

For natural boundary conditions in which the constraint forces

do no work, the natural frequencies of a slender beam are given by

n= (81/2 (4.2)
n Rp9
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where the coefficient B is characteristic of the particular type of

boundary conditions, and

wn = natural frequency of the beam for the nth mode,

A = length of the beam,

E = modulus of elasticity,

I = area moment of inertia,

Pb = mass density,

0 = cross sectional area.

For modes of order three or higher (n53), [13] gives the expressions

of Table 4.1 for the coefficient B for various boundary conditions.

For the frequencies of interest in the radiation problem, the

errors involved in calculating the natural frequencies by assuming the

boundary conditions to be simply supported are typically less than ten

percent of the lowest frequency of interest. This assumption allows a

simple form describing the mode shapes and the natural frequencies to

be utilized in place of the more complex functions associated with the

true boundary conditions. Thus B = na and fn(x) = sin(nnx/k) define

the natural frequencies wn and mode shapes fn(x) respectively, for a

simply.supported beam of length A. Thus, the natural frequencies of

the beam under consideration are insensitive to the particular type of

boundary conditions for frequencies such that the modes of vibration

are above the first few resonances. For realistic beam geometries this

is the case and the problem is greatly simplified by assuming the beam

to be simply supported. The problem is reduced from the vibration

model of Figure 4.1 to the simply supported beam of Figure 4.2.
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Table 4.1 Values of the Coefficient B for Various Boundary Conditions

Boundary Conditions 0

Free - Free 2n-1

Free - Pinned (4--)

2n-1
Free - Fixed (f)

Pinned - Pinned (n)i

Pinned - Fixed 4n1

2nFixed -Fixed
Fixed - Fixed
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F(x, t)

Figure 4.1 Board Vibration Model

F(x,t)

Figure 4.2 Simply Supported Beam
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In the following analysis, simple beam theory neglecting rotary

inertia and shear deformation is assumed and damping, in general, is

ignored. Damping may be introduced into the modal solution by formu-

lation of the differential equation in terms of a generalized coordi-

nate.

4.4 The Modal Solution Technique

Since any deflected shape of the beam can be resolved into spatial

harmonic components by the method of Fourier analysis, it follows that

y(x,t)= E (qn)(f , (4.3)
n=l

where the qn are the Fourier coefficients. For a simply supported

beam the terms of the Fourier series are identical with the natural

modes of vibration, but for other boundary conditions are more complex

functions of x. Thus instead of specifying the function y(x) for all

points on the beam, the qn may be specified. The advantage in this

representation is that a good approximation to y(x) may be obtained

by using only the first few terms of the series.

If y is a function of space and time, then

y(x,t) = E qn(t) fn(x) , (4.4)
n=l

and the qn contain the time dependence. The spatial dependence is

contained in fn; the modes of displacement. The qn are the generalized

coordinates corresponding to the modes of displacement f
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The functions f n(x) satisfy the homogeneous form of equation (4.2)

subject to the imposed boundary conditions. For the simply supported

beam of Figure 4.2 the fundamental mode of vibration is a simple sine

wave, and the overtones are sine waves with different integral numbers

of half-waves along the beam.

It may be shown from the classical separation of variables approach

that the displacement qn of any one natural mode is governed by the

same type of equation as the single degree of freedom system, thus

M qn + C q + K q n L (4.5)
n n n n n

The terms Mn , C , K and L are, respectively, the generalized
nnn n

mass, the generalized damping coefficient, the generalized stiffness,

and the generalized force corresponding to the nth normal modes The--

coupling through the damping terms is ignored in this analysis. The

generalized mass is the mass M , which has the same kinetic energy

when moving with velocity q~ as the whole system moving at velocity

n f (x), i.e.

S2 2 2
Mn qn /2 = q/2 p PO (fn(x)) dx

or Mn = Pb (f (x)) dx . (4.6)

which, when displaced by ha the ame potential enegy a thewhich, when displaced by qn, has the same potential energy as the
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actual system when displaced by qn f (x), i.e.

2 nn2/ " 2
Kn q 2/2= q 2  2 E (fn ( ) )2 dx

-o •

where 1/2 El (fn (x)2 dx is the flexural strain energy of the

0

simple beam. Thus

Kn = (fn (x))2 dx (4.7)

The generalized damping coefficient Cn is the rate at which a simple

damper moving at qn dissipates energy at the same rate as the whole

system of damping forces and pressures on and in the system when moving

at qn f (x). The generalized viscous damping is given by

Cn (fn(x))2 c(x) dx (4.8)

where c(x) is a viscous damping coefficient assumed to vary with x,

The generalized force (Ln ) is that single force when moved through

a small distance qn, does the same amount of work as all the externally

applied forces and pressures acting on the system when the system is
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moved through a small displacement qn fn. Thus

Ln = f (x) F (x,t) dx , (4.9)

0

Assuming that

c(x) = 2§ w M , (4.10)
n n

equation (4.5) can be written as

S+ 2 q + q = L /M (4.11)
n n n n n n n n

where w is found from the solution to the frequency equation-assGciated

with the nth mode of the beam, and §n is defined by equation (4.10).

In concluding the modal vibration discussion it is appropriate to

review the assumptions made in developing equation (4,11). Equation

(4.3) represents the steady state response to equation (4.2) from the

contributions of an infinite number of mechanical oscillators (each

responding at its modal frequency) weighted by the mode shape of the

distributed structure. The mode shapes are dependent upon the physical

properties and boundary conditions of the structure. The magnitude of

the contribution from the generalized coordinate is given by the solu-

tion to equation (4.11) and depends upon the initial conditions of the

problem as well as the values of the generalized parameters. The total
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response is obtained from the expressions for the mode shapes and

generalized coordinates by summing as specified by equation (4.3).

4.4.1 Fourier Transform Representation

For excitation containing many closely spaced harmonic components

approaching a continuous spectrum it is convenient to express the

steady state solution using Fourier transforms. Define the transform

pair as.

Y(w) = I y(t) e - i (wt) dt

y(t) = (1/2T) Y(w)e i ( Wt ) dw (4.12)

where Y(w) is the Fourier transform of the displacement response. The

functions Y(w) and y(t) are equivalent ways of representing the re-

sponse; the former is a real function in the time domain and the latter

a complex function in the frequency domain. Figure 4,3 shows an exam-

ple of a Fourier transform pair where the time signal y(t) is a square

pulse.

Taking the Fourier transform of equation (4.11) under steady state

conditions yields

[-w2 + 12§ n + 2 (w) L(x,w)/M (4.13)
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where

L (x ,) = F(x,w) fn (x) dx = L (x,t) e-i( t)dt. (4.14)

o o

Solving for the transform of the generalized coordinate q gives

Qn ( F(x, w)f dx. (4.15)
SM 2  (1-(w/wi2+2i§ (W/Wn))j n

nnn o

The term in brackets is known as the transfer impedance function for

the system and is denoted by Hn(w).

In the previous analysis only viscous damping, in which the

component of force due to damping is directly proportional to velocity-,

was considered. For hysteresis or structural damping the damping term

depends on displacement rather than velocity. Thus the term 2 § n/m

is replaced by 61 and the damping is independent of frequency. Since

6i is generally small the relation valid for structural damping is

H (w) = , (4.16)
n (1-(/w )2 + i61)

n i

and in general

(W) n()(x) 
dx

n -- n2 F(x,w) f(x) dx (4.17):Z] 0
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Since

y(x,t) = C qn(t)fn(x) (4.18)
n=l

the complete solution in the frequency domain takes the form

Y(x,w) = E Qn ()fn(x)
n=l

= I f(x) n F(x,w) f (x) dx , (4.19)
n=1 M -

0 0

The displacement in time can be obtained by taking the inverse transform

of equation (4.19)

-1 -I
y(x,t) = F {Y(x,w)} = Fe [ Q (w) f (x)} (4.20)

n=l

-1
where F { } denotes the inverse transform and from equation (4.17),

Q(w) = [Hn (w)/(Mn  n1 )] L n(x,w).

The convolution in the Fourier sense for two functions A(() and B(w)

is of the form

-1
Fe {A(w) B(w)} "4 A(t-T) B(t) d'r

0
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Applying the convolution integral to equation (4.19) gives

-1 -1
Fe {f n(x) Q(w)} = fn (x) Fe {Q(w)}

S n (t-T) L (x,T) dr (4.21)

n n

and the response can be represented by

t h n(t-r)

y(x,t) = E f (x) n L (x, ) dI - (4.22)
n=1 MW

o

The function hn () represents the system response in v to a unit

impulse and Ln denotes the forcing function acting on the system.

Equation (4.21) is seen to define a transformation from a product in

the frequency domain into a convolution integral in the time domain.

In terms of the Fourier inversion integral the result is

y(xt) = (-) Ml -2 I H (w)Ln(x,w) ei(wt)d,) .(4.23)
n=l Mwn n

The convolution integral of equation (4.22) represents the

response as a linear superposition of free vibration solutions in the

time domain, while the Fourier transform solution of equation (4.23)

represents the response as a linear superposition in the frequency
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domain of steady state responses to simple harmonic excitations, The

solutions must be identical and are related by

h(t) = (1/2) H((j) ei(t) d , (4.24)

and

H(w) = h(t) e- i (Wt) dt (4.25)

.which define a Fourier transform pair.

From equation (4.19) the response is

Y(x,w) = E f (x) 2  F(x,w) f (x) dx . (4.26)
n= 1 M

For a force F(x,w) concentrated at x = x such that F(x,w)

= (F(x)).(F(w)) then

SF(w) 6(x-x ) f (x) dx = F(a) * f (x )  (4.27)Jo no
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Using this fact in equation (4.19) gives

Y(x,w>) = E f (x) F(w) fn (x )
n=l M

= f fn(x) fn(o 2 F(w) (4.28)
n=1 MW

or

Y(x,w) = (G(w)) (F(w)) (4.29)

and taking the inverse Fourier transform gives

y(x,t) = (1/2v) G(w) F(w) e i ( Wt ) dw , (4.30)

where

f= n (x) fn (x) H (w)
G(w) = n no n

n=l Mw
n n

4.4.2 Power Spectral Density

For simple structures the power spectrum Y(x,w) can be obtained

once the Fourier transform of the excitation signal is found. For an
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excitation F(t) that is a stationary process, the two sided power

spectral density function is given by E2] as

S f(w) = F() 2 (4.31)
T

where T is the period of the signal. The practical difference between

the two sided and one sided power spectral density is that for real

signals the magnitude of the former is one-half that of the latter.

It can be shown that if a force F(t) is put into a linear system having

a transfer function H(w), the output y(t) is related to the input F(t)

through the transforms by

IY(W)I 2 = F(w)J JH(w)1 2

or

S y() = Sf () . H() 2  (4,32)

where'IH()l 2 is the square of the transfer function and Sf(w) and

S (w) are the input and output power spectral density functions,

respectively.

4.4.3 The Special Case of Periodic Signals

For the special case of periodic signals, the signal may be con-

sidered as the convolution of.one period of the signal with an impulse

train of period T.
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If F(t) is the periodic signal, let

f(t) = F(t); t < t < t + T
o o

f(t) = 0 ; otherwise

and F(to+jT) = F(to), where j = 1,2,3...

Making use of the Dirac delta function and the convolution property

gives

F(t) = f(t) E 6(t-jt o ) , (4.33)

where the * denotes convolution.

Taking the Fourier transform of both sides of equation (4.33) yields

-i (wj T)
F(w) f(w) E e (4.34)

or

F(w) = (f(w)/T) E 6(w - 2jr/T) (4,35)
j

where the last term in equation (4.35) is periodic in frequency with

period 1/T Hz.

As an example consider the periodic pulse train of Figure 4.4.

The Fourier transform of the signal i.3 shown in Figure 4.6 and consists
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Figure 4.6 Fourier Transform of the
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of a series of frequency impulses every l/T Hz. The magnitude of the

impulses is the Fourier transform of the signal over one period divided

by the period T, i.e, F(w)/T.

For the assumed simply supported beam of uniform cross section,

the mode shapes and modal frequencies are given by

fn(X) = sin(nrx/) , (4.36)

and

2 EIgc 1/2

w = (n/) (4.37)

From equation (4.16), assuming hysteresis damping, the quantity Hn(w)

is

Hn() 2 (4.38)
(l-(W/w )2 +i i)

so that equation (4.28) is

Y(x,w) = C f (x) f (x ) F(U) (4.39)
n=1 Mn o

For a force F(x,w) acting at a position xo on the beam,

f (xo) = sin(nx o/Z) and equation (4.39) for the frequency responsen o o
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becomes

00 ain(nrx/) sin(nix I£) _ F . (440)
Y(xW ) 2 o 1 ) (4.40)

n=1 M W-(w/w )2+i)

For a periodic forcing function of the form shown in Figure 4.4 the

function F(w) can be expressed as

F(w) = f() e-i(jt) (4.41)

or

F(w) (f(w)/T) 6 (w-2j /T) (4.42)

and

f(w) = (1/T) f(t)e- i(2 jit/T) dt . (4.43)

O

Thus, equation (4.40) can be written in the form

S sin(nw/Z) sin(nwrx /Z)
Y(x,w); E 2

n=l M W 1-(w/w )

f(w) 2(
T 6 T (4.44)T T
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The Fourier series pair for describing periodic signals is

,i(W jt)
F(t) = E A (jw ) e (4.45)

=-O

where wo is the fundamental frequency, wo = 2fr/T, and

-i( it)
= F(t) e dt (4.46)

The quantity F(w) takes the form

F(w) = T Ao(J o )  (-j ) ,0 (4.47)

which is convenient for use in conjunction with tabulated series

representing various waveforms. Thus

Y(,) = sin(n7x/t) sin(n x 0/4
Y(x,w) = E 0 .

n=l Mn 2  -(w/w )2+16

z Ao(jw) (d(-jwo) (4.48)
J=-= 0

where Ao(J o) may be evaluated experimentally or determined from the

Fourier series representation. Evaluating the.generalized mass for a
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uniform beam of length Z, density pb, and cross sectional area f,

gives

Mn pba fn(X) 2 dx = pbn/ 2  (4.49)

so that the frequency response becomes

2 0 sin(nrx/k) sin(nx o/£) 1
Y(x,w) = (-- ) E 2 22+

b n=1 W (1-(/W )

0 A (jW ) 6(w-jw) , (4,50)

where the real part of the transfer impedance H (w) has been -taken.
n

The solution is observed to contain only harmonic components at each

of the forced frequencies (w). The free vibration components, in the

presence of damping, decrease rapidly with time and for practical

purposes disappear. The term sin(nnx/z) is the expected sinusoidal

spatial variation in the response, and sin(nx o/9)represents a sup-

pression of frequencies in accord with the location of the force on

the beam. The forced vibration is observed to occur at the forced

frequency and harmonics with the amplitude being governed by the damp-

ing term (6i) in the vicinity of resonance (w=w ).

4.5 Application to Wood Planers

In the planing operation the bea;n represents the board being sur-

faced and the harmonic exciting force F(x,t) symbolizes the periodic
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impact of the cutting knives on the board. The special case of a

square knife cutterhead arrangement can be represented with regard to

frequency by a fundamental blade passage frequency and harmonics of

this frequency, The contributing frequencies are given by

fh = BPF times n (Hz) (4.51)

where BPF is the blade passage frequency and n = 1,2,3...

The blade passage frequency is related to the cutterhead RPM and the

number of knives by

BPF = (RPM)(N)/60 , (4.52)

where N is the number of knives on the cutterhead.

For any type of periodic impact of the blades on the board the

resulting pulse can be subdivided into a series of pure-tone signals

which are harmonically related, i.e., all frequencies are integral

multiples of the fundamental frequency. Thus for any type of blade

impact. (cutterhead design) that repeats itself regularly, equation

(4.35) is valid. For the case of aperiodic impact, which cannot be

subdivided into a set of harmonically related pure-tones, the response

can be described in terms of an infinitely large number of pure-tone

components of different frequencies spaced an infinitesimal distance

apart and with different amplitudes.
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5. THEORETICAL DEVELOPMENT OF A MODEL FOR BOARD RADIATION

5.1 Introduction

The vibration analysis has given the response of the board as a

function of time (or frequency) and position on the board. This rep-

resentation is often difficult to use in conjunction with the approxi-

mate relations for radiated sound resulting from a vibrating surface.

For closely spaced harmonic components the vibration state of the

board can be represented by average properties valid strictly for a

reverberant vibrational field. Thus, information regarding the vibra-

tional field obtained from energy considerations or experiments takes

the place of the exact relations of Chapter .4.

In the formulation of a model for board radiation the phase cell

concept of structural vibration is utilized. In effect, the board is

considered to be composed of a finite number of radiating piston ele-

ments. The critical frequency, which governs the overall radiation of.

sound from the board, is utilized to divide the radiation problem into

three frequency ranges. Expressions for the radiated sound power are

derived for each frequency range using formulations for a rectangular

baffled piston. The baffled restriction is removed by using a theo-

retical analogy with a freely suspended disk.

The radiation characteristics of narrow and wide boards are

compared theoretically and the radiated power is computed numerically.

The computed sound power levels are then converted to average sound

pressure levels using the semireverberant substitution technique.
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5.2 The Vibrational Field

The board radiation problem can be modeled by considering the

beam to be composed of a finite number of piston elements. The vibra-

tional field of the board is defined using energy principles in terms

of board geometry and energy delivered to the board. Using a simple

piston model to obtain the radiation characteristics and energy con-

siderations to define the velocity field, it is possible to predict

the acoustic power output of the vibrating board.

In order to properly dimension and locate the piston elements it

is necessary to specify the mode shapes (eigenfunctions) and natural

frequencies (eigenfrequencies) of the vibrational field. In this

'analysis the response of the board is assumed to be reverberant in

nature; the individual modes being uncoupled and separated in fre-

quency, This is equivalent to assuming an input force consisting of

well spaced pure-tone frequency components with the frequency response

of the board concentrated in narrow frequency bands.

5.2.1 The Structural Wavelength

Above the first few natural modes the natural frequencies are

relatively independent of the particular type of boundary constraints.

The transverse structural wavelength for a uniform, rectangular,

slender beam is given by [3] as

n B [ci/pb 21/4 )/2V_ 1/514

ns f wn)1 /2 /2 6 (5.1)
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where

Xns = modal structural wavelength of the nth mode,

CB = transverse bending.wave velocity,

f = n/21 .

Using equation (4.1) for the natural frequencies of such a beam, i.e.

2 EIg 1/2
Wn = (/) 2 p j P (5.2)

in equation (5.1) above, yields

Xns = 2T /B (5,3)

The factor 8 depends on the particular mode, which in turn, depends on

the length of the beam. Equation (5.1) indicates that the modal struc-

tural wavelength (X ns) at a particular resonant frequency is dependent

only on the thickness and material constants of the beam, Although the

beam length governs the frequency corresponding to a particular mode,

the mode shape at a given frequency is independent of beam length.

Equation (5.1) is also independent of the boundary conditions. Figure.

5.1 shows the theoretical variation in wavelength with frequency as a

function of thickness and material, The reference frequency f is
0

taken as the fundamental harmonic frequency in the Fourier spectra of

the excitation.
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5.2.2 Power and Energy Considerations

From a statistical energy standpoint, the power supplied to the

system must equal the sum of the power lost through damping and the

power radiated as sound into the surrounding air. The steps in deter-

mining the response are given by [2] as:

(1) The total energy stored in the system equals the sum of

the kinetic and potential energies of the structure

ET = M <2> , (5.4)

where M is the total mass of the structure and <V2> is the mean-square

transverse vibrational velocity averaged over the structure.

(2) The internal energy dissipation in one cycle of vibration is

equal to the total stored energy times the dissipation loss factor nd '

At frequency w, Pd = ETWnd where Pd is the power dissipated.

(3) The acoustic power radiated into free space is equal to the

mean-square velocity times the real part of the radiation impedance

function. Thus

Pa = <2 > Re [Z] = Rrad <2> (5.5)

a rad

where Pa is the radiated acoustic power.

Equation (5.5) is strictly valid if the modes are excited by a

random noise in a narrow bandwidth Aw centered on w, where the space-

time average transverse velocities of, the modes within the band are

equal This form is chosen since it :an be applied when the motion of,
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the structure is either single mode vibration or a reverberant vibra-

tional field. From equation (5.5) the radiation resistance is defined

as

Rra d = Pa/<v 2>  (5.6)

In this case the radiation resistance is independent of the modal

energy of the structure. This is equivalent to assuming that the

mechanical resistance and the acoustic resistance achieve values inde-

pendently of the energy distribution; that is the modes are not coupled.

Using equation (5.4) relating energy, velocity, and mass, gives

<V2> = E /M . (5.7)

For a beam excited across its entire width (W) by a force (F) per

unit width, the energy input varies with width as

ET " W or ET/W = constant . (5.8)

Since the energy input is linearly related to the width, equation

(5.7) can be written as

-v2> = ET/(bWtb )  (5.9)
<V > = ET/(pbWtbt) . (5.9)
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where

M = PbWtb Z,

Pb = density of the beam,

W = width of the beam,

tb = thickness of the beam,

A = length of the beam.

combining equations (5.8) and (5.9) yields

<V2> = (ET/W) (1/btb)) 1/ (5.10)

for a given density and thickness. The velocity term is observed to be

independent of beam width since more energy is delivered for the wider

beam, thereby rendering the quantity ET/W constant. Equation (5.10)

states that the product of mean-square velocity and board length is

constanti a result which will be quite useful in obtaining the total

radiated sound power from the beam.

5.3 The Elementary Piston Model for Board Radiation

The present analysis is based on the replacement of the vibrational

field of the beam by an array of rectangular piston radiators, having

the characteristics of monopole radiators insofar as general behavior

is concerned. The phases of the monopoles correspond to the phase of

the vibrational field at each position. Each radiator (piston) has the

dimensions of d (one-half the structuoral wavelength, A /2) and W (the

width of the piston) and vibrates out of phase with a neighboring piston.
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For classical baffled piston type radiation the radiation resistance

is given by [26] in the form

1 Ka>>l
Rrad 2 " (5.11)rad 2

(Ka) Ka<<1

where

K = w/Ca,

a = characteristic piston dimension,

w = circular frequency,

Ca = speed of sound in air.

The expression for the radiation resistance is seen to be dependent on

the Ka factor; consequently several frequency ranges must be considered,

The size of the piston.element to be used in this model is determined

by the beam width, (a constant for a given beam) and the structural

wavelength, which depends on frequency. In determining the radiation

produced by a piston radiator, an important consideration is the ratio

of the flexural wavelength in the structure to the wavelength of sound

in air at the same frequency, since a compression of air is necessary

for acoustic radiation.

5.3.1 The Critical Frequency

When structural and acoustic wavelengths are plotted versus fre-

quency the curves intersect defining a critical frequency for every

thickness of the beam (see Figure 5.2). The critical frequency can be
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observed from the points of intersection shown in Figure 5.2 or calcu-

lated from [2] as

X = X ; C/f = C /f

s a B a

which gives

f = (Ca2/27) 2 (5.12)

where

C B 2 (EIg/P b) 1 / 4

f 1/2

and

X = the structural wavelength,

X = the acoustic wavelength,
a

Ca = the acoustic wave velocity,

CB = structural wave velocity,

Figures 5.3 and 5.4 show the effect of beam thickness and material on

the critical frequency, respectively.

The importance of the critical frequency is evident in the radia-

tion of sound by an unbounded flexural wave. If the structural wave-

length (X s) is larger than the acoust tc wavelength (X ), then byHuyghens principle there is a radiated wave on either side of the
Huyghens' principle there is a radiated wave on either side of the
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structure forming the angle 6 = sin-l1 ( a s) between the direction of

propagation and the normal to the structure. As XA approaches a the

angle moves toward its maximum. If Xa surpasses hs then 6 becomes

imaginary and radiation fails. In effect the contrary motions of

adjacent portions of the structure cancel, resulting in zero radiation.

For a finite beam, interior sections effectively cancel each other

leaving only the end portions as radiators. Three cases of radiation

are considered according to the ratio of A to A , which defines the
a s

amount of interference between neighboring pistons, This is equivalent

to dividing the radiation problem into three frequency ranges, being;

above the critical frequency (As > a ), at or near the critical fre-

quency (Xs A ), and below the critical frequency (A< a a)' The three

cases can be represented diagramatically, with the shaded areas being

the radiating acoustic sources in Figures 5.5, 5.6, and 5.7. Above the

critical frequency (As > a ) the phase cells of Figure 5.5 are decoupled

and cancellation effects are negligible. At or near the critical fre-

quency (As = Xa) the cells.are coupled but internal cancellation is

incomplete. The radiating area, the shaded portion of Figure 5.6, is

a fraction of that for the case above the critical frequency. Below

the critical frequency (As < a ) the phase cells, acting as point

monopoles localized at the cell center, interfere and internal cancel-

lation is complete. Only the edge monopoles of Figure 5.7 of half

strength are left as radiators. The three cases considered correspond

to Ka> 1, Ka\l, and Ka< 1, respectively, with "a" being a typical

piston (phase cell) dimension.
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Figure 5.5 Individual Piston Radiation Above

the Critical Frequency

Figure 5.6 Individual Piston Radiation Near

the Critical Frequency

Figure 5.7 Individual Piston Radiation Below

the Critical Frequency
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5.3.2 The Phase Cell Concept

The phase cell concept is used to represent the instantaneous

relative phase of neighboring piston elements constituting the beam.

The length of each piston is determined by the structural wavelength

of the beam at a particular frequency. For example, the pure-tone

component shown in Figure 5.8 would be represented by the phase cell

arrangement of Figure 5.9. In Figure 5.9 the length of each piston

element is d = X /2; one-half the structural wavelength.
s

For the case of a beam mounted in an infinite plane baffle the

radiation can be characterized by an array of rectangular baffled

pistons, with each piston affecting a neighboring piston in accord

with the three frequency ranges discussed. The model must be altered,

however, to allow for a beam radiating into free space. In analogy

with the freely suspended disk of [24], the unbaffled piston elements

behave in much the same manner as the baffled piston for cases such

that Kb >1, where b is one-half the vector distance between the

monopole sources located on each piston face. For values of Kb such

that Kb <1 the monopole sources on each face of the piston exhibit

cancellation effects similar to the case of X < X for neighboring
s a

piston elements. The total radiation of the beam is composed of the

contribution of N piston elements, where N is determined by the beam

length, structural wavelength, and Ka factor for the particular fre-

quency of interest.

5.4 Acoustic Power Radiation

Utilizing the phase cell model, 'the radiation resistance can be

approximated in each frequency domain as a function of the various beam



57
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Figure 5.9 Phase Cell Representation of

Structural Wavelength



58

parameters. The total acoustic power (Pa) radiated to the far field

is given by [2] as

P = R <2> (5.13)a rad

The quantity <V2> is the mean-square (space-time averaged) transverse

velocity of the beam (or piston element), This velocity may be obtained

theoretically using the methods of Chapter 4, or approximated by means

of the energy techniques discussed elsewhere in this section. It has

been shown, (see equation (5.9)), that the quantity <V2> for a rever-

berant vibrational field may be expressed in terms of the beam mass and

the energy input to the system. The mean-square velocity was observed

to decrease with increasing beam length for a constant energy input, as

expected from the concept of equipartition of energy for reverberant

systems. Repeating equation (5,10)

<-2> = ET/(pbtbaW) " 1/z . (5.14)

The quantity ET is the energy stored in the beam and is independent of

the length of the beam. From equation (5.14) it is observed that for

a particular beam the product < 2> 2 is constant and the resulting

acoustic power output of the beam can be expressed from equation (5.13)

as

Pa = (Rrad)( <V2>) conspant*(R ad/) , (5.15)a a d'.
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Thus, the task is reduced to determining the radiation resistance for

the different frequency domains and beam geometries.

5.4.1 Individual Piston Behavior

The piston model formulation is general (valid for all values of

Ka) for each individual piston, but the number of radiating pistons

(N p) will depend on the particular frequency with respect to the criti-

cal frequency. Preliminary to determining the values of the radiation

resistance, it is necessary to examine a single unbaffled piston in

detail to determine the combined behavior of monopole sources located

on each face. This is equivalent to considering a dipole source of

strength Qb for Kb<l, where Q is the equivalent simple source strength.

Thus, the model accounts for short circuiting at low values of Kb for

the unbaffled beam.

Figure 5.10 shows a section through the beam along with an indi-

vidual piston element. In the equivalent source model of Figure 5.11,

the monopole sources are considered to be concentrated at the piston

centers, reversed in phase. For the two sources of Figure 5.11 to

form an effective dipole, it is required that b < Xa/2. In analogy

with the freely suspended disk of [24], the radiation resistance can

be represented by

(2pc)irr for Kr>>l

Rrad = ; (5.16)

(3pc)(Kr) 4r2 for Kr<<l

where pc is the specific acoustic impedance and r is the disk radius.
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For values of Kr>l the baffled and unbaffled piston radiation differs

by a factor of two, accounting for radiation from both sides for the

latter case. The radiation is altered only in the range of Kr<l. In

this region (Kr<l) the following expressions for the radiation resis-

tance are appropriate

pcA(Kr)2/2 (baffled)

Rrad = 0 (5.17)

3pcA(Kr) (unbaffled)

for Kr<l.

The radiation efficiency, defined as radiation resistance divided

by pcA, takes the form

Rrad r (Kr)2/2 (baffled)

a = pcA , (5.18)

3(Kr)4  (unbaffled)

for Kr<l.

Thus the radiation efficiency for the baffled piston is greater than

that for the unbaffled piston for small Kr, (Kr<l). The value of Kr

where the curves of a versus Kr intersect for the two cases is found

from equation (5.17) as

(Kr) 2/2 = 3(Kr) or Kr = //6 . (5.19)
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Short circuiting is possible for values of Kr<l6; for values of

Kr>l/6 the radiation for the baffled and unbaffled pistons differ only

by a factor of two. Figure 5.12 indicates the difference in the radia-

tion characteristics for the two casds for Kr<l/6, For a typical piston

dimension "a" (a = 2r) it is assumed for Ka<l short circuiting effects

are possible and for Ka>l they are not possible.

The radiation field for a flat, rectangular piston set in a plane

rigid wall is considered; the far field relations for the radiation

impedance being deduced from the well known case of the baffled circu-

lar piston. As indicated, the deviation of the unbaffled beam from the

baffled case due to cancellation is apparent only for values of Ka such

that Ka<l, where "a" represents an effective diameter,

In accord with [24] for a baffled circular piston

Rra d = pcA 8 (Ka) (5.20)

where

eo(Ka) = [1-(2/Ka)J 1 (Ka)]

and J1 is the Bessel function of order one. The function e (Ka) is

plotted versus Ka in Figure 5.13.

In converting from the baffled circular piston to the baffied

rectangular piston the approximate result given in (24] is

[a e0 (Ka) - b2 e(Kb)
Rrad= pcA[2 _ b 2 - (5.21)
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where

1-J (Ka)
80 (Ka) = 1-42 (5.22)

and the piston area (A) = ab, with Jo the Bessel function of zero

order. Figure 5.14 indicates the variation of e with Ka for a

rectangular piston.

For the special case of a square baffled piston the radiation resis-

tance formula reduces to

Rra d = pcA e (Ka) , (5.23)

where eo is defined by equation (5.20). The function 60 (Ka) exhibits

the following properties;

e (Ka) 1 1 ; Ka>4

O (Ka) ' Ka ; 2<Ka<4 (5.24)

a (Ka) ' (Ka) ; Ka<2

Combining equations (5.24) and 5.23) gives

pcA ; Ka>4

Rrad ' pcA(Ka) ; 2<Ka<4 (5.25)

pcK2A2 ; Ka<2
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The function o0 (Ka) is plotted versus Ka in Figure 5.15. Interference

effects occurring between faces of the individual unbaffled pistons

are indicated by the dashed portion of the curve for Ka<l.

For an unbaffled beam the value of 0o to be used in equation (5.23)

is twice that read from Figure 5.15 since Figure 5.15 is based on a

radiating area of only one piston face. The dashed portion of the

curve for Ka<l should be used, since short circuiting may occur for

the unbaffled case. The curve applies to each individual piston, thus

the total radiation resistance for the entire beam involves a summation

over the number of radiating pistons. The number of contributing pis-

tons, as pointed out, depends on the ratio of the structural and acous-

tic wavelength for each frequency.

5.4.2 Application of the Piston Model to a Finite Beam

The piston model cannot be applied to the beam radiation problem

over the entire frequency range of interest since the number of con-

tributing piston elements differ in each frequency domain. For this

reason, the radiation problem is divided into three frequency domains

depending on the critical frequency:

(1) Frequencies above the critical frequency where all the

piston elements contribute to the radiation.

(2) Frequencies at or near the critical frequency where a frac-

tion of the piston elements contribute,

(3) Frequencies below the critical frequency where only the end

portions of the beam are assumed to radiate.

The phase cell representation concept discussed earlier is shown in

Figure 5.15.
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Case 1. - Above the Critical Frequency

The assumptions for this case are:

(1) Above the critical frequency the individual piston elements

of Figure 5.16 radiate independently, i.e., cancellation effects are

not present.

(2) The length of the beam is great compared to the acoustic

wavelength in air for frequencies above the critical frequency.

(3) The piston element dimensions are approximately equal and

the simplified square piston model is sufficiently accurate.

(4) The Ka factor is such that Ka>l so that the radiation for

the baffled and unbaffled cases differ only by a factor of two,

Assumption (3) is justified since for typical beam (board) thicknesses

of one-half to two inches the range of frequencies involved is 1000 to
II I

5000 Hz. From Figure 5.3 it is noted that 4 <X s/2<10 and beam widths

(W) typically vary from four to twelve inches (4 <W<12 ).

In light of these assumptions, equation (5.21) for the radiation

resistance takes the simplified form of equation (5.23), and for a =

X /2 and b = W becomes

Rra d = pc(Xs/2)W [e o(KX /2)] (5.26)

for the baffled piston, and

Rra d = 2pc( s/2)W [e (Ks /2)] , (5.27)
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for the unbaffled piston. The previous two equations can be written

in the form

rad = pc(X /2)W [e (KX /2) 2 (5.28)

where the symbol is understood to mean that the first term is to

be.multiplied by a factor of one for the baffled 
beam and by a factor

of two for the unbaffled case. This convention will be adopted for

subsequent equations.

Accounting for the number of piston elements constituting the

beam (N p), equation (5.23) becomes

rad = N *Rad = pCW [6 0 (KX /2)] 2 (5,29)

total

where the beam length (Z) and the number of radiating pistons (N p) are

related through the structural wavelength (X,) by

z = N p( /2) or N = 9/(X /2) - (5.30)

For the special case when the Ka factor is much greater than unity

(Ka>>l, Ka>4 is sufficient) the function eo(Ka) of equation (5.29)

approaches unity (see Figure 5.15) and the radiation 
resistance is

essentially independent of Ka. For this case equations (5.28) and

(5.29) can be written as

Rrad = pc(As/2)W (5.31)
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and for N radiating piston elements

R rad= N R a= PCWZ (5.32)

total

Thus, at high values of Ka the radiated wavelength 
is small compared

to "a" and each portion of the surface radiates 
independently and is

separately loaded. At high frequency the impendance is resistive;

equal to the piston area times the characteristic 
impedance (pcA).

For values of Ka such that 1<Ka<4 the curve 
of 9 (Ka) versus Ka

of Figure 5.15 can be roughly approximated by obtaining the 
slope of

the curve in the region 2<Ka<3; or

0 = Ka/2 
(5,33)

o

Using equation (5.33) in equation (5.28) 
gives for the radiation

resistance

Rrad = pcKW2 (X /2) /2 (5.34)

Note that the quantity (KXs/2) can be replaced by KW, since a square

piston has been assumed (W=X s/2). The radiation resistance for the

entire beam is found by multiplying equation (5.34) 
by N ; the number

of radiating piston elements, thus

2 9 1 / 2 1
R r pcKW (5.35)

rad I
total
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The results obtained for the baffled beam can be compared with

the results obtained in [21] and [22]. Defining the surface area S

(S = Wk) the radiation resistance for the baffled case, as given by

equations (5.32) and (5.35), is

pcS ; KW4

Rrad = (5.36)

total 1pcKWS ; 1<KW<4

For frequencies above the critical frequency such that A >A and

t>X a, [21] gives the radiation resistance as

Rrad = pcS(l-(a /s) 2 ) 1/ 2  cS , (5.37)

where y<1 (high Ka) and y is taken as - KW(l-(A s)2) 1 / 2

For y<l, the radiation resistance is given as

R = 1 SpcKW (5.38)
rad 2SPc

which is also the result obtained in (22] for a narrow beam,

Case 2. - Near the Critical Frequency

The assumptions for this case are:

(1) At or near the critical frequency the piston elements of

Figure 5.16 do not radiate independently. The radiation from one

phase cell partially cancels that from adjacent cells since they are

180 degrees out of phase. The degree of cancellation ranges from
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zero, slightly above the critical frequency, 
to unity below the criti-

cal frequency.

(2) The beam is long compared to the acoustic wavelength

(Z>Xa/2).

(3) The KS factor is such that Kb>1 so that the faces of an

individual piston element radiate independently.

(4) The assumption made on the fraction of cancellation 
over-

powers the magnitude of the errors involved in assuming that Xs/2=W

in this frequency range, so that the square piston model is again

assumed.

In regard to assumption (1), the exact degree of cancellation between

neighboring phase cells in the vicinity of the critical frequency 
is

unknown. In this narrow frequency range the cancellation, theoreti-

cally, jumps from zero to unity. To account for this effect an

average amount of cancellation of one-half can be assumed without

great inaccuracies, which is essentially what 
is done in [21], As-

sumption (3) is justified since for midrange values 
of Ka(1/2<Ka<4)

the two faces of an individual phase cell radiate as independent 
mono-

poles.

Assuming that neighboring pistons, spaced one-half of a struc--

tural wavelength apart, partially cancel resulting in an effective

decrease in the number of radiating piston elements by a factor of 
one-

half, the expression for the radiation resistance for the square piston

model is

rad= N rad cWoe KX /2) (5.39)
rad p rad 2
total
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where

Rrad = pc(Xs /2)W 6 (KX s/2) (5.40)

and N = 1/2 [i/s /2] since effectively only half of the pistons

contribute.

The more accurate expression for the rectangular piston model

given by equation (5.21) is

S (X/2) 2  o (KX /2) - W2  (KW)
R = N R pcW1 [ s s (5.41)

radtotal p rad 2 ((Xs/2) 2_W2)

Several special approximations depending on the Ka factor are presented.

Ka factor less than unity (Ka<l), The function 0 for the baffled and

unbaffled piston elements is approximated by

(Ka)2/2 (baffled)

8 % (5,42)

o 3(Ka)4  (unbaffled)

so that

(KX /2)2/2

Rrad =f pC(s/2)W (543)

6(KX /2) 4

S
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and

(KX /2) 2/2

R =N R cW1 (5.44)
rad p rad 2
total 6(KX s/2) 4

Ka factor ranging from one to four (l<Ka<4), In this region the curve

of Figure 5.15 is approximated by

80 = Ka/2 = (KX /2)/2 = KW/2 , (5.45)

so that

R = pcKW2 ( s/2) (5,46)rad s

and

1/2
R = N R i pcKW2 (5,47)
rad p rad 2
total

Ka factor greater than four (Ka>4), In this Ka region the function

o(Ka) becomes independent of Ka and approaches unity

S= 1 (5,48)
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so that

Rrad = pc(Xs/2)W [2 (5.49)

and

R =N.RR rad = 1 pcWL (5.50)
rad p rad 2 PCW
total

Since the square piston model has been assumed, the terms (X /2) and

W have been used interchangeably.

In summary, the following approximate results are obtained for the

radiation resistance for several ranges of Ka for frequencies near the

critical beam frequency.

pcWR(KW)2  ; KW<1
3(KW)2

2 1/4
Rd = pcW2£K 1; <KW<4 (5,51)

total

pcWi ; KW>4

The result obtained in equation (5.51) for 1<Ka<4 may be compared

with that of [21] for the baffled beam which also gives

R 1 pcKW2 . (5.52)
rad 4 .
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Case 3. - Below the Critical Frequency

Below the critical frequency the mode shape of the beam fn(x) is

such that the structural wavelength is very short compared to the

acoustic wavelength. Thus the radiation from a crest to a node segment,

shown in Figure 5.17, is effectively cancelled by the radiation from

the adjacent segment, which is 180 degrees out of phase. By extending

this argument, it is concluded that all the radiation from the central

portion is effectively cancelled, so that the radiation must be

accounted for by the end segments of length ( s/4). The radiation is

equivalent to the.coupling of a pair of rigid pistons, each having a

mean-square velocity equal to the mean-square velocity of the whole

beam and vibrating with the same relative phase as the end regions of

the beam.

Below the critical frequency the faces of individual piston ele-

ments may act as monopoles radiating independently or, for the un-

baffled case, a higher order source (dipole) depending on the frequency

and piston geometry. As discussed earlier, the baffled and unbaffled

pistons differ by a factor of two for Ka>l, since the effective radi-

ating area is doubled., For Ka<1 short circuiting may occur between

the two radiating faces of the piston for the unbaffled case. This

leads to lower values of the radiation resistance than the values for

a completely baffled piston. The short circuiting ((Ka) term) effect

is shown in Figure 5.12 along with the baffled piston curve ((KA)
2

term) for low values of Ka. The simplified model for the square piston

element is assumed since in this frequency range the piston (beam)

width-is approximately equal to the iuantity (~ /4), If the width (W)
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is such that 4 <W<12 and the frequency range under consideration

satisfies the relationship 100<f<1000 (Hz), then from Figure 5.2

5 <X /4<12 so that the square piston model assumption is again

justified.

In Figure 5.12 (Ka)4 and (Ka)2 like terms were plotted versus Ka

up to the point of intersection of the two curves. The dipole effect

of the piston faces is present only for such Ka that the term 3(Ka)
4

is less than (Ka)2/2 since the dipole cannot surpass the monopole in

efficiency. The radiation resistance relations are again based on the

square piston model, but in the frequency range below the critical fre-

quency the model cannot be applied without certain restrictions con-

cerning Ka and the beam length. The size of the end piston elements

which radiate is now (Xs/4>(W), as shown in Figure 5.18.

Several special cases of beam radiation below the critical fre-

quency will be considered.

Radiation from a long beam with (>X a/2>As/2 ; KW>1). This is

equivalent to assuming that the end pistons are sufficiently far apart

to radiate as independent monopoles and the individual pistons faces

radiate independently as if in a baffle. The expression for the radi-

ation resistance from equation (5.23) is

R = pcabs (a)

(5.53)

= pc(Xs /4)We0 (KXs 4)
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Figure 5.17 Diagram of Beam Radiation Below

the Critical Frequency

Figure 5.18 Phase Cell Representation of Beam

Radiation Below the Critical Frequency
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and since only two piston elements radiate (Np =.2)

Rrad = N rad = 2pc( /4)W [ (KX/4)] (5.54)

total

The function 0 (Ka) is again approximated for l<Ka<4 by

8 0 = Ka/2 = K(Xs /4)/2 (5.55)

and since the square piston model is assumed to be valid

0 = KW/2 . (5.56)

Combining equations (5.54), (5.55), and (5.56) and again noting that

only two piston elements radiate (Np=2) the radiation resistance for

the beam becomes

R = 2pcKW( /4)2 (5.57)
rad s
total

for 1<Ka<4, where X /4 has been replaced by W, the piston width.

The results obtained can be compared with those of [21] which

gives

R 2 [2-(X /X) )2(
W s s aR = aW (s) 2)3/ 2  (5.58)ra d pc X a [(1 s/ 2 a) 3/2
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or

Rrad pcWK(Xs /4) 2  (5.59)

for the baffled piston since the acoustic wavelength is related to K

by Aa = 2r/K.

Radiation from a long beam with (£>Xa/2>Xs/2 ; KW<I). This is the

case of a beam, long compared to the acoustic wavelength (Xa), but

exhibiting dipole effects due to the interference between the faces of

each piston. Thus the baffled and unbaffled beam must be analyzed

separately. The function eo in this frequency range is noted from

Figure 5.15 to be

e0 (Ka)2/2 (baffled)

(5.60)

oa 3(Ka) 4  (unbaffled)

Using equation (5.23) for the square piston model, the radiation resis-

tance per piston becomes

Rra = P(X /4)W 0 (KX /4) (5.61)
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Using equation (5.60) in (5.61) and accounting for two radiating

pistons gives

(KW) /2

R ra d = N .Rad 2pc(Xs/4)W , (5.62)

total 3(KW) 3

for Ka<l.

For the case of a baffled beam, [21] gives the radiation resis-

tance for X >X , 7T>a and W< as
a s a a

Rra d  pcW2 (KX /4) 2  (5.63)

which is in agreement with equation (5.62).

The remaining cases to be considered are beams which are not long

compared to the acoustic wavelength. This is not the usual case, since

in most practical situations the beam length (Z) is greater than three

feet (a machine operation requirement) and such low frequencies that

(3 <<X /2) are of little interest. For this case the edge monopoles

are coupled, and (a) the individual piston faces are uncoupled (Ka>l),

or (b) the value of Ka is less than unity and the faces are also coupled

(this is applicable to the unbaffled beam only).

There are two further cases to consider:

(1) The edge monopoles are in phase, and the interference is

constructive producing a total radiated power twice that if separated.

(2) The edge monopoles are oppos3ite in phase giving rise to a

dipole, radiating power that is second order to that of a monopole.
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The resulting radiation may thus be characterized as monopole, dipole,

or quadrupole in nature depending on the relative phase of the end

portions and whether the beam is baffled or unbaffled.

The equations governing the radiation resistance in the three

frequency domains associated with the critical frequency are given in

Table 5.1 for baffled and unbaffled beams. The critical frequency to

be used in Table 5.1 for a particular beam geometry and material is

found from Figure 5.2.

5.4.3 An Exact Solution for Beam Radiation

The exact solution for the radiation from an infinitely long

cylindrical beam given by [24] has been generalized in (14] to apply

to beams of elliptic cross section and extended to include beams of

rectangular cross section. An outline of this analysis is presented,

subject to the following assumptions:

(1) The beam is infinite in extent, thus the radiation is

limited to frequencies above the critical frequency ( > a ).

(2) Coupling between normal modes of vibration due to damping

is neglected since the modes are well separated and in theory a uniform

damping force will not couple transverse vibratory modes,

(3) Internal damping is independent of frequency but does depend

on such factors as material, size, and moisture content and is speci-

fied experimentally.

(4) Air viscosity is neglected, reducing the problem to that of

acoustic radiation.

(5) The amplitude variation is -inusoidal and end effects are

neglected.
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Table 5.1 Radiation Resistance for Different Values of the Ka Factor

for Each Frequency Range

Ka Factor Beam Length Piston " Frequency Radiation
Assumption Dimensions Range Resistance

ALL* a > Xa/2 Xs/2 = W f > f pcW o( KW) I

KW>4 I >Xa/2 Xs/2 z W f> f' pcWM 2

K<W<4 a > Xa/2 Xs/2 W f > f 1/2pcW2gK 1

ALL* a > Xa/2 As/2 = W f = fc /2pcW£oe(KW)

K< W<4 a > Xa/2 Xs/2 z W f z f 1/4pcKW2 k

KW<l Z > Xa/2 Xs/2 z W f f pcWa (KW)2/4J

ALL* I > Xa/2 Xs/2 = W f < f pcW2 o(KW) [2

K<W<4 a > Xa/2 xs/2 = W f < fc pcW2 (W) 1

KW<1 a > Xa/2 Xs/2 : W f < f pcW2  (K)4

* For values of KW<1 the expression given for the radiation resistance

is valid provided the curve corresponding to the baffled or unbaffled

case in Figure (5.16) is used.
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Finite beams vibrating in modes above the first few resonances usually

meet the above assumptions. Subject to these assumptions, [14] gives

the acoustic loss factor (na) as

na = -Re{FR /Vcos(Kx)e-it)} (1/(pbWtb)) , (5.64)

where

FR = beam radiation loading,

na = acoustic loss factor,

Re = real part of quantity,

b = mass density of the beam,

W = circular frequency,

W = beam width,

i =

tb = beam thickness,

t = real time,

vo = surface velocity.

The loading term FR is a quite complicated combination of Mathieu

functions and their derivatives for which expansions in terms of Bessel

and Hankel functions are required. The values of the loss factor (n a )

versus a dimensionless frequency parameter (q) are shown in Figure 5.19

for various beam width to thickness ratios. A plot of Kd given by
1/2

[(2r/a ) -(2nr/X)2 ]  versus frequency reveals that for the thickness
a s I

range of interest Kd is essentially iriependent of thickenss, making
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it possible to plot na versus frequency for various beam widths. The

results, shown in Figure 5.20,are valid only above the critical fre-

quency for each particular thickness of the beam.

The relation between the radiation resistance (R rad ) and the loss

factor (na ) for finite beams is given by

Rrad = Mna , (5.65)

where w is the circular frequency and M is the total mass of the

structure.

At first glance the radiation resistance appears to depend on the

mass of the beam, which was not the case in the piston model. This is

explained by observing the following proportionalities:

na- - (1/(ApbWtb)) Re{FR/vo} o (Pa/Pb)(W/tb) , (5.66)

Letting M = pb Wtbk, equation (5.65) becomes

Rra (PbWtb ) (pa/Pbb) (W/tb) Paca KW2 ' (5.67)

The result given in equation (5.67) is similar in form to the results

of the piston model near the critical frequency. In this case, how-

ever, the dependence of na on frequency is quite complex,

A comparison of the radiation efficiency (a) above the critical

frequency is shown in Figure 5.21 for the exact method of (14] and the
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elementary piston model. The curves are plotted for an eight inch

wide, one inch thick, oak board having a critical frequency of about

700 Hz. The two curves are in excellent agreement above the critical

frequency. The radiation efficiency (a) used in Figure 5.21 was de-

fined previously as

a = Rrad /(pcA) , (5.68)

where A is the total radiating area.

5.5 Theoretical Trends and Comparisons

It is of interest to examine the radiation characteristics of

beams of different widths. For comparison purposes, beams of two and

eight inch widths will be considered. Only the frequencies above.and

near the critical frequency will be considered, since the lower fre-

quencies do not contribute appreciably to the total radiated power. To

define a specific critical frequency, a one inch thick, red oak beam

is considered which corresponds to a critical frequency of about 700

Hz. At the critical frequency the values of KW for the two beams are

It

KW(W=8 ) 2nfc W/Ca =2.60

(5.69)

KW(W=2 ) = 2nfe W/Ca 0.65
c .a
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The case of an unbaffled beam will be considered. From Table 5.1, the

radiation resistances above the critical frequency are

it

Rrad(W=8 ) = 2pcW6o (KW)

(5.70)

Rrad(W=2 ) = 2pcWZeo (KW)

and

R (W=8 ) = 2pcWk for KW>4
rad

(5.71)

Rrad(W=2 ) pcW 2K1 for 1<KW<4

Near.the critical frequency the radiation resistances are

Rrad(W=8 ) = pcWZo(KW)

(5.72)
I!

R (W=2 ) = pcW8e (KW)
rad. o

and

1 2
rad (W=8 ) = - cKWL

(5.73)

R (W=2 ) = 3pcWL(KW) .

The values of 6 (KW), based on Figure 5.15, are given in Table 5.2.
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Forming the parameter Rrad/4, where = 2pcKWotbo, the radiation

resistance expressions become

We (KW)/(KW t ) for f>f
o o bo c c

Rrad/0 = (5.74)

We o(KW)/(2KWotbo) for f-fe c

and the approximate forms are

W/(WoKtbo) for f>fe

R /ad(W=8 ) = (5.75)

rad2

1(W /(W t bo)) for f=f

and

(5.76)
-i(w2/(Wotbo)) for f~fc

rad/ /(W= 2  (5.76)

0 for f=f
c

These expressions may be conveniently compared with the results

obtained in [14]. Recalling equation (5.65)

Rrad = Mna = wPbWtbLna , (5.77)

thus

Rrad/0 - wPb(W/Wo)(tb/tbo)

(5.78)

= 2(Pb/a)(W/Wo)(tb/tbo)na a
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where the value of na is found from Figure 5.20. Since Figure 5.20 is

based on pa/Pb = 1.55 x 10-3,which corresponds approximately to red oak,

the radiation parameter becomes

Rrad/ = 324na (W/Wo) (tb/tbo) (5.79)

The values obtained for na from Figure 5.20 are given in Table 5.3 and

the values of the quantity Rrad/4 for W = to 1 inch are given in

Table 5.4, and plotted in Figure 5.22. From Figure 5.22 it is observed

that the theoretical trend of [14] which predicts that the major con-

tribution to the radiation parameter for the wider board is concentrated

in the vicinity of the critical frequency, while that for the narrower

board is spread out, is also apparent from the simple piston model.

The piston model is noted to exhibit the theoretical trends while

allowing quite simple computations of the radiated sound power.

5.5.1 A Comparison of the Radiation Characteristics of Wide and

Narrow Beams

The radiated sound power for two beams of four and eight inch

widths is of interest. The beams are excited across their width at a

blade passage frequency of 240 Hz, The beams are assumed to be of the

same material and the same length (five feet). The mean-square veloc-

ity - length product (<V2>£) is assumed to be constant and the velocity

magnitude and frequency spectra are assumed to be the same for each

beam. The beams are assumed to radiate from an infinite baffle.
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Table 5.2 Radiation Efficiency Parameter for Different Values of KW

for Each Beam

f (KW) e (Kw) (KW) e (Kw)
(Hz) (w-8") (W-8") (W2") (w=2")

500 1.80 0.40 0.46 0

700 2.62 0.60 0.66 0.02

1000 3.75 1.00 0.93 0.08

2000 7.50 0.95 1.88 0.40

3000 11.00 1.00 2.80 0.75

4000 14.00 1.00 3.70 1.00

Table 5.3 Acoustic Loss Factor for Different Frequencies.

f na  na
(Hz) (W=2") (W18")

1000 1.00x10 3  9.00x10- 3

2000 2.00x10- 3  4.50x10-3

3000 3.00x10-3  3.50x10-3

4000 2.70x10-3 2.70x10-3
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Table 5.4 Comparison of Radiation Parameters for Different Mathematical

Models

Exact Meth6d Piston Model Piston Model
Frequency 14] (Exact) (Approximate)

(Hz) R /(2pcWt ) R /(2pcWt R /(2cKAWt

W=2" "=8" W-2" W8" W=2" W8"11

500 0 0 0 0 0 0

700 0 0 0.13 7.30 2.00 7.00

1000 0.65 23.40 0.34 17.00 2.00 15.20

2000 1.30 11.60 0.85 8.10 2.00 9.00

3000 1.93 9.00 1.07 5.70 2.00 6.00

4000 1.74 7.00 1.10 4.30 2.00 4.00.
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Equation (5.13) gave the radiated sound power for this case as

Pa = Rad <V2> = (R/rad)(<V >) . (5.80)rad rad

The values of the radiation resistance for the three frequency ranges

are given in.Table 5.1 for the baffled beam as

pcWBo(KW) for f>fe

rad = PcWkeo(KW) for f=f (5,81)

pcW2 (KW) for f<fe

for the square piston model based on beam width.

Defining the radiation efficiency as

a = R /(pc£W) , (5.82)rad .

the sound power may be written as

Pa = c(pcW) <£Z2> . (5.83)

Table 5.5 is obtained from Figure 5.15 for a blade passage fre-

quency of 240 Hz and harmonic frequencies for the two beams under

consideration. A plot of the radiation efficiency (a) versus frequency

for the eight and four inch wide beams is shown in Figure 5.23.
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Table 5.5 Radiation Efficiency for Different KW Values of Each Beam

8 8
f K KW KW o o

(W-8") (W=4") (W-8") (W-4") (W-8") (W-4")

240 0.11 0.88 0.44 0 0 0.02 0

480 0.22 1.76 0.88 0.30 0.09 0.08 0

720 0.33 2.64 1.32 0.67 0.15 0.34 0.08

960 0.44 3.52 1.76 0.92 0.35 0.92 0.35

1200 0.55 4.40 2.20 1.10 0.50 1.10 0.50

1440 0.66 5.30 2.64 1.12 0.65 1.12 0.65

1680 0.77 6.20 3.10 1.05 0.80 1.05 0.80

1920 0.88 7.00 3.50 1.00 0.92 1.00 0.92

2160 0.99 >7.00 3.96 1.00 1.05 1.00 1.05

2400 1.10 - 4.40 1.00 1.10 1.00 1.10

2640 1.21 - 4.85 1.00 1.12 1.00 1.12

2880 1.32 - 5.30 1.00 1.12 1.00 1.12

3120 1.43 - 5.65 1.00 1.10 1.00 1.10

3360 1.54 - 6.20 1.00 1.05 1.00 1.05

3600 1.65 - 6.60 1.00 1.00 1.00 1.00

3840 1.76 - 7.00 1.00 1.00 1.00 1.00
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It has been observed experimentally that the force-frequency

characteristics of the input force (F) and the frequency response

characteristics of typical boards (H ) are such that the acceleration

-2
response of the board (<a >) is essentially constant over a wide fre-

quency range. These quantities are in general related by

Sy () = Sf (W) IH()12 , (5.84)

where

S f() = input power spectral density = F(w)/T,

S (w) = output power spectral density = Y(w)/T.

The quantities F(a) and Y(w) are the Fourier transforms of the input

function F(t) and the response function y(t), respectively. In terms

of the radiation resistance, the power expression for a constant

acceleration - frequency spectrum is

Pa = R <2> Rrad <a >/ , (5.85)

since for single frequency components.

-2> -2 2
<> <a >/ . (5.86)

Thus, for constant acceleration response, the mean-square velocity

2decreases with frequency as Figure 5.24 shows the mean-square
decreases with frequency as 1/w . Figure 5.24 shows the mean-square
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velocity frequency response under this assumption, plotted against a

dimensionless frequency parameter f/fo . It is convenient to take fo

as the fundamental blade passage frequency. Noting that V = a /,
o o

the velocity ratio can be written as

2 2 2
(V/V ) = l/(W/ )2) = /(f/f)2, (5.87)

where V = a / = 2nf .

Recalling the expression for radiated power

Pa = R <2> = (R /9) <V2/V>- (<V2>Y)
rad rad o o

and using equation (5.83), gives

Pa = pcWo <V2/V2> (<-2>,) (5.88)o o

The variables in equation (5.88) are the product o<V V2> and the beam
O

-2
width (W) since the quantity <V >k is assumed to be constant. Com-o

binirg the radiation resistance curves of.Figure 5.23 and using Figure

5.24 for the velocity variation, results in Figure 5.26, which is a

plot of o<V 2/V>(W/Wo) versus the frequency ratio f/fo . The frequency

variation in the velocity term of equation (5.88) is accounted for by

the factor (<V /V >) and the velocity amplitude, which depends on beam

-2
length, is taken into account by the term <2 > shown in Figure 5.25.

0o

The frequencies that contribute to the overall power-output are

noted from Figure 5.26 to be; (a) the fourth harmonic (f/fo=4) for the0
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eight inch beam, and (b) the fourth, fifth, and sixth harmonics

(f/fo = 4, 5, 6) for the four inch wide beam.

The discrete frequency sound power levels (L ) can be obtained by

defining a suitable reference power (Po) and performing the operation

10 loglO(Pa/Po), thus

Lw(f/f o ) = 10 log (Pa/P o)

= 10 logl 0 [(<V2 /V>W) (pc) (<V2 >)/Po

or

Lw(f/fo ) = 10 loglo0[<V2/V2>W] + 10 loglo0 <Ve>]

(5.89)

+ 10 loglO[pc/Po]

where the first term is obtained from Figure 5.26 and the second term

is specified experimentally or calculated from energy considerations.

When the value of <V2>, the mean-square velocity, is known as a

function of frequency for the board under consideration, equation (5.89)

can be written in the more useful form

L(f/fo) = 10 logl0[o ] + 10 logl0[W]

(5.90)
+10 loglo0 [ ].+ 10 log 1 0 [<V2>] + 10 loglo0[pc/P
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The radiation efficiency (a) is plotted versus frequency in Figure 5.23

for the beam widths of interest.

Equation (5.89) can be simplified by making an approximation based

on the frequencies at which the beams radiate significant power. The

fourth and fifth harmonics (f/fo = 4, 5) correspond to frequencies of

960 and 1200 Hz which are near the critical frequency for typical beam

thicknesses (see Figure 5.3). The approximation from Table 5.1 for

the radiation resistance of a baffled beam for 1<KW<4 is

Rrad = pcWAc =1 pcKW2i , (5.91)

.so that

a = KW (5.92)

Substituting equation (5.92) into equation (5.89) gives

LW(W) = 10 log1 0 [ KW2 -2 -2
V 10 i 2

-2
+ 10 log 1 0([<V>] (5.93)

+ 10 loglo[pc/Po]

Using the relationship K = w/C a = 2rf/C a gives

Lw(f) = 10 loglo[W 2] + 10 log1 0 [<V2/ >f]

S(5.94)
+ 10 logl0[ 1pa /(2Po)] 10 loglo[t<V2>]

10 a
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From equation (5.87),(V/V )2 1= /(f/f ) 2

so that

f </ > = f 2/f , (5.95)
o o

and

L4 (f) = 10 log l0 [W 
2 ] + 20 logl 0[fo] + 10 logl0[ora/(2Po)]

+ 10 logl0[< 2 >] - 10 logl0[f] . (5.96)

The unbaffled beam at frequencies near the critical frequency

differs from the baffled case (equation (5.88))by a factor of two.

The sound power level, under identical conditions, would be three

decibels greater for the unbaffled beam.

In the immediate vicinity of the critical frequency, where the

sound radiation is concentrated, the last four terms of equation (5.96)

are the same for either beam and represent an additive constant. In

this case the sound power output proportionality is

L (f=f c) C 10 logl0[W2] = 20 logl0[W ]  (5.97)

The power produced is observed to depend primarily on beam width and

increases six decibels for each doubling of beam width. The assumptions

made in reaching this conclusion are net for most planing operations and
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the six decibel increase in radiated power has been observed experi-

mentally for a wide variety of operations..

5.5.2 A Numerical Calculation of Radiated Sound Power

To compute the actual value of the radiated sound power for each

beam, equation (5.89) is utilized, i.e.;

LW(f/fo)= 10 logl0[<V /V >W] + 10 logl0( o9<V>

+ 10 logl 0 (pc/Po] , (5.98)

Using Figure 5.26 for the values of the first term in equation (5.98)

gives the data shown in Table 5.6. Using a reference power of 1013

watts, the quantity 10 logl0 [pc/Po] is approximately 128 decibels under

standard atmospheric conditions.

The product of board length and mean-square velocity in equation

(5.98) is, in general, unknown. The velocity response of the board

can be calculated, theoretically, by the methods of Chapter 4 or

approximated using the energy considerations of Chapter 5. In either

case the magnitude of the excitation force must be specified. This

magnitude is difficult to ascertain either analytically or experimen-

tally, since it is governed by the particular energy transfer mechanism

between the cutterhead and the board. To facilitate the comparison of

the theoretical and experimental results, a rough approximation of the

quantity <2 >£ based on experimental data is utilized. For frequencies

near the critical frequency, experiments indicate that typical values
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are of the order of unity. Using <2> = 1, equation (5.98) becomes
o

L (f/fo ) = 10 logl0[<V2 /V>W] + 128 dB . (5.99)

The sound power output under this assumption for the eight and four

inch board widths is presented in Table 5.7.

For a semireverberant environment, typical of most industrial

plants, [11] relates the average sound pressure level at a specific

radius (r) to the sound power level by

LW = - 10 logl 0 (/SH+ 4 /R) - .5 dB (5.100)

where

LW = sound power level in decibels (re 10-
13 watts),

L sound pressure level averaged on the surface of a

hemisphere surrounding the source,

SH = surface area of the test hemisphere (2nr2), where r

is the radius of the hemisphere in feet,

R = the room constant.

The expression for R is given by [11] as

R = aAr/(l-;)

where a-is defined as the ratio of ene gy absorbed by the walls to the



Table 5.6 Radiation Efficiency Parameter for Several Values of the

Fundamental Frequency Ratio

f/<V2/2 W 10 loglO[a<V2/V >W] (dB)
f/fo o o0 (w=8"1) (w-8") (w"8") (w=41")

3 0.24 0.07 -6.25 -11.60

4 0.50 0.08 -3.00 -11.00

5 0.32 0.08 -5.00 -11.00

6 0.23 0.07 -6.40 -11.60

Table 5.7 Sound Power Level for Each Beam

f/fo Lw (dB) Lw (dB)

(W=81") (w=4 ")

3 121.75 116.40

4 125.00 117.00

5 123.00 117.00

6 121.60 116.40
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energy incident on the walls and Ar is the total area of the reflecting

surfaces. For typical rooms (a = 0.2) R ranges from 700 to 1000 ft2 ,

so that 4/R = 0.001 and 1/SH  0.006 at a radius of five feet from the

machine. Thus 4/R + 1/SH = 0.007 so that 10 log 10 (0.007) 
= - 22

decibels. Equation (5.100) relating the sound power level and the

sound pressure level for a radius of five feet, becomes

t

LW= L p(r=5 ) + 22 dB

or

L (r=5 ) =LW - 22 dB

The sound power levels and sound pressure levels at a radius of five

feet from the machine for the two board widths are given in Table 5.8

along with the overall levels.



113

Table 5.8 Sound Power and Sound Pressure Levels for Each Beam

f/f
(W-8") (Wm8") - (w.4") (Wm4")

3 122.0 100.0 116.5 94.5

4 125.0 103.0 117,0 95.0

5 123.0 101.0 117.0 95.0

6 121.5 99.5 116.5 94.5

OVerall
(dB) LW 129  L 107 L- 123  L 101

Levels
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6. EXPERIMENTAL INVESTIGATION OF WOOD PLANER NOISE

6.1 Introduction

The experimental program was directed primarily toward the noise

produced by a single head surfacer, although many of the conclusions

reached carry directly over to the more complex cases of double sur-

facers, moulders, and heavy duty planers. The experimental study is

divided into the following areas:

(1) Identification of sources of planer noise.

(2) Identification of the factors influencing noise.

(3) Techniques of noise reduction.

(4) Practical noise control study areas,

The practical noise control study was concentrated in three major

areas:

(1) Mechanical redesign of cutterheads to reduce the energy

input into the board and thus the energy radiated as sound.

(2) Treatment of vibrating surfaces including techniques of

damping, absorbing, and reflecting vibratory energy.

(3) Sound absorption techniques including the design of acoustic

enclosures.

6.2 Reiteration of the Sources of Planer.Noise

The noise sources which are considered to contribute to the overall

planer noise problem were listed in Chapter 3 and are repeated here for

convenience.

(1) Board radiation due to the vibration of the board itself.

(2) Anvil radiation caused by s.ructural vibration,
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(3) Aerodynamic noise produced by the rotation of the cutterhead

near stationary surfaces.

(4) Noise produced by the electric motors used to power the

cutterheads and feed works.

(5) Dust collection system noise.

(6) Noise produced by the vibration of.machine surfaces such as

feed beds and housings.

(7) Noise produced by the drive train system.

The contribution of each of these sources to the overall planer.

noise has been studied experimentally and will be discussed in Section

6.4. In order to study the effects of different sources and parameters

on planer noise, a series of experiments were conducted using a cabinet

type single surfacer installed in a suitable laboratory space. The

data acquisition and analysis equipment used is described in the

following section.

6.3 Data Acquisition and Analysis

The semireverberant laboratory space where the experimental

program was conducted is shown in Figure 6.1. The location of the

planer in the room is shown along with microphone positions referenced

to the center of the machine cutterhead. The x-y-z coordinate positions

correspond roughly to the recommended points on the surface of a hypo-

thetical hemisphere, used to compute the radiated sound power. The

substitution method was used to calibrate the room in accord with [11].

Reverberation time measurements were in good agreement with the room

constant obtained using the reference sound source method for broadband

noise.
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Sound pressure level and board acceleration measurements were

taken using the experimental arrangement shown in Figure 6.2. The two

channel tape recorder was utilized since the simultaneous measurement

of sound and vibration was necessary for correlation studies. The data

analysis apparatus also shown consisted essentially of a one-third

octave real time analyzer, which aided in the analysis of short dura-

tion signals, ahd a one percent narrow band analyzer, which was neces-

sary in the detection of blade passage frequencies and harmonics. Tape

loop capabilities were necessary in conjunction with the narrow band

analysis of short duration signals.

An experimental setup was also devised to simulate planer noise by

mechanically exciting boards. The arrangement consisted essentially of

a square wave signal generator, which simulated the periodic impact of

cutterhead knives, an amplification unit, and an electro-mechanical

shaker. Correlation studies were easily achieved using this arrange-

ment. The apparatus shown in.Figure 6.2 was also used in connection

with tire-plate suppression system studies, discussed later in this

chapter.

6.4 Factors Influencing Planer Noise

Although several of the factors discussed here are interrelated

to some degree, the individual effect on the total sound produced can

essentially be considered independently. For example, if by tighten-

ing the pressure bar a noise reduction of five decibels is obtained

and by using sharp knives another five decibel reduction is expected,

then a planer operating with a tight 'ressure bar and sharp knives.

would be expected to produce ten decibels less noise than.its
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counterpart with a loose bar and dull knives. The amount of reduction

depends of course on the operating levels, hence the example cited

above would be valid only for one particular machine and operating

condition.

6.4.1 Board Width

Since board vibration is the major source of noise, board width

serves as a measure of the energy input into the board, and thus is an

indicator of the resulting sound produced. Since the energy delivered

to the board per unit width is constant, the board can be considered to

radiate like a series of unit sound radiators, with each unit width

radiating a certain amount of the energy that is put into the board.

Thus, the total energy input to a wide board is greater than that for

a narrow board since more work must be done on the wider board. The

power input to the board is a function of the velocity and force of the

cutting knives. The power output in the form of sound energy is

related to the surface area and transverse velocity of the board. For

the case of board vibration, the source strength is related to the

board surface area and the board velocity, where the velocity is a

space-time average over the surface of the board.

Based on this physical reasoning, a series of tests were conducted

to ascertain the variation in radiated sound power with board width,

This was accomplished by measuring the sound pressure levels at four

locations around the machine for various board widths holding other

parameters constant. Using the methods (11], sound power levels were

computed from the average sound pressire levels. Figure 6.3 shows
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the results of these measurements and indicates a six decibel increase

in sound power for each doubling of board width.

6.4.2 Board Length

The length of the board is not so simply related to the resulting

sound field since the energy transmitted to the board from the cutter-

head tends to be distributed along the board longitudinally. As a

result of this spreading out of the vibrational energy, the total sound

emission is not dependent on the length of the board, since changes in

surface velocity due to variations in length are counterbalanced by a

change in the surface area of the board (length times width). Noise

level measurements for various length boards, shown in Figure 6.4,

indicate that the length of the board, alone, does not influence the

sound levels produced. The acceleration levels, however, are signifi-

cantly increased as board length is decreased. The product of board

surface area and acceleration remains essentially constant. The rela-

tionship between sound pressure level (noise level), acceleration level

(g level), and board length for a double surfacer and the single sur-

facer studied is shown in Figures 6.5 and 6.6. These figures show that

although the acceleration levels are lower for the longer boards, the

product of acceleration level and board length remains constant. The

decrease in.acceleration level of approximately three decibels per

doubling of length is shown in Figure 6.7 for both the single and

double surfacer.
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6.4.3 Board Species

The species of wood being cut has a marked effect on the frequency

range of board response. The board responds to some extent at all

forced frequencies and harmonics; however, the frequencies of maximum

response, corresponding to strong board resonances, are significantly

affected by the type of wood being planed. The natural frequencies

for a beam of rectangular cross section can be expressed by

W = 8(n)(Elgc/ b) 1/2

where the coefficient 8 depends on the length, boundary conditions,

and mode of vibration (n).

Here,

w = natural frequency,

E = modulus of elasticity,

Pb = density,

0 = cross sectional area,

I = moment of inertia.

The material properties in.the equation above are the modulus (E)

and the density (pb). Examining the ratio of E/p for several board

species provides a means of determining the frequency range of maximum

board response. Typical values for the ratio of E/pb, normalized on

red oak are given in.Table 6.1.
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Table 6.1 Ratio of EI/ for Different Wood Species

Material Normalized E/eb

Red Oak 1.0

Pine (short leaf) 1.2

Cedar 0.6

*Values taken from the Handbook of Chemistry and Physics for dry wood.

The values shown above indicate that pine should have a frequency

.range of maximum response that is higher than red oak, while cedar

would respond better in the frequency range corresponding to the lower

harmonics of the blade passage frequency. The ratio of I/Q is propor-

tional to be board thickness squared and also affects the frequencies

at which maximum response can be expected. The effect of board thick-

ness on the sound produced is discussed elsewhere in this section.

An experimental analysis of the sound and vibration levels for

pine and oak boards indicates a difference in the frequency content

of the spectra. The one-third octave plot of Figure 6.8 shows that

the sound energy produced by the pine boards is concentrated at higher.

frequencies than that corresponding to oak boards. The modulus of.

elasticity and density, as well as variations in internal damping,

stiffness, and energy required to remove a chip, are primarily respon-

sible for these differences. The moisture content of the wood could

also possibly affect the degree of in'ernal damping and thus the sound

produced.
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6.4.4 Board Thickness

Although the thickness of the board does not appreciably affect

the overall sound pressure level produced, the board thickness does

affect the natural frequencies of board vibration. Since the board

will respond well only when a natural frequency is close to a forced

frequency or harmonic, the effect of board thickness is much the same

as that of board species, i.e. it changes the frequency range of maxi-

mum board response.

Measurements made on six, eight, and ten inch wide boards having

original thickness ranging from 3/8 to 1 and 3/8 inches, indicate no

noticeable trend in the overall noise levels produced. The variation

in noise level with different board thickness, shown in Figure 6.9, is

well within experimental accuracy.

6.4.5 Depth of Cut

The depth of cut does not noticeably affect the vibration or sound

spectra for depths ranging from 1/16 to 1/8 of an inch. This result

would be expected to apply to any planing operation provided constant

blade contact and smooth cutting are maintained. As cut depths are

greatly increased or decreased, extraneous factors associated with non-

uniform cutting tend to make noise analyses impractical. For an ex-

tremely shallow cut, surface irregularities, as well as unequal knife

tip radii, result in intermittent cutting and an unsteady sound field.

6.4.6 Sharpness of Knives

Noise levels produced by the planer, for similar cutting opera-

tions,- increase as the knives become 'ull, since the force required to
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remove chips increases and thus the force transmitted to the board is

increased. This results in an increased energy input into the board,

part of which may bedissipated as sound.

Detailed experimental results relating the variation in noise

level to knife sharpness are not available. However, measurements

taken over long periods of time have indicated a substantial increase

in noise levels as the knives become dull.

6.4.7 Pressure Bar Tightness

The firmness with which the board is held against the anvil struc-

ture by the pressure bar greatly affects the magnitude of board vibra-

tion and thus the noise produced. The firm contact of the pressure

bar on the surface of the board reduces the magnitude of the board

response to the periodic impact of the knives. The sound pressure

level decrease associated with a tight pressure bar is directly corre-

lated to the corresponding reduction in board acceleration level. The

effect of pressure bar tightness on board vibration and the resulting

noise level is shown in Figure 6.10.

6.4.8 Machine Feed Speed

The input feed speed does not.appreciably affect the noise levels

produced for speeds ranging up to several hundred feet per minute, As

the feed speed is appreciably increased, however, the sound and vibra-

tion signals become transient in nature and are difficult to measure

accurately.
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6.4.9 Chipbreaker Mechanism

The chipbreaker mechanism, in addition to its normal function, is

observed to act to some degree as a vibration suppressor. The chip-

breaker reduces the magnitude of vibrations propagated along the board,

and thereby reduces the noise produced by that portion of the board.

The mechanism governing this phenomena is believed to be a combination

of the chipbreaker acting as (1) a barrier of block of weight added to

the board reducing the propagated vibration and, (2) a vibration iso-

lator or absorber at certain "tuned" frequencies. It has also been

suggested that the physical effect of the chipbreaking on the mechanism

of chip removal contributes to the reduced noise levels. The effec-

tiveness of the chipbreaker as a noise suppressor depends in part on

on the pressure exerted on the board, the stiffness of the springs used

in the chipbreaker, and the nature of the contact made with the board.

The effect of the chipbreaker on the planer noise level has been

investigated experimentally by operating the planer with the chip-

breaker completely removed. The noise levels measured, shown in Figure

6,11, increase by approximately ten decibels when compared to a similar

operation with the chipbreaker in place.

The chipbreaker, unlike the board, responds well only at frequen-

cies centered around the 500 and 6300 Hz bands.The spectrum of Figure 6.12

shows that 480 Hz is a harmonic of the forcing frequency, while the

6000 Hz component is probably a purely resonant type response, The

isolated frequencies of chipbreaker response indicate that a "tuned

vibration absorber" effect may be obtained by adjusting the chipbreaker

spring stiffness to respond well at certain frequencies. The mechanism
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involved in the sound attenuation obtained using the chipbreaker is

being studied experimentally in order to optimize chipbreaker design

and devise other apparatus to attenuate the longitudinal propagation

of vibration along the board.

The chipbreaker has also been utilized to indicate the nature of

the force imparted to the board by the knives. Since the chipbreaker

responds well at only a few frequencies, the accelerometer readings

taken on the surface of the chipbreaker can be used to indicate the

duration and frequency of the impulse created upon blade impact. An

oscilloscope trace of the chipbreaker acceleration response as a

function of time is shown in Figure 6.13. The high frequency oscilla-

tion of the signal can be directly related to the observed resonant

response of the chipbreaker at 6000 Hz in Figure 6.12. By counting the

number of cycles completed per centimeter in Figure 6.13, the resonant

frequency of the chipbreaker can be calculated. The pulse duration

and spacing can also be obtained from the figure for a given oscillo-

scope sensitivity. The natural frequency of the chipbreaker is found

from:

cycles
f = = 6 les 6000 Hz

.5 msec msec
cm

6.4.10 Cutterhead Design

The noise produced by the cutterh'ead and knives can be grouped

into two categories; (1) aerodynamic .oise and (2) noise produced by
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forced vibration of the board. The aerodynamic noise is predominant

when the machine is idling, but is usually well below the noise pro-

duced due to board vibration when material is being planed.

Aerodynamic Noise

The predominant source of noise when the machine is idling is

aerodynamic noise. The mechanism of noise generation is the presence

of pressure fluxuations when air is disturbed by the knives in the

vicinity of stationary surfaces. Several pure-tone frequencies are

usually produced and can be easily correlated with the blade passage

frequencies and their harmonics. Usually only the first three har-

monics are of importance in the aerodynamic noise. The expected fre-

quencies are integral multiples of the blade passage frequency defined

by

BPF = blade passage frequency = (number of knives)(RPM)/60,

The presence of stationary surfaces, such as feed beds and cavities

can affect both the frequency and overall level of the radiated noise.

The exact proportion by which the noise radiated by planers is affected

by surfaces and cavities in the vicinity of the cutterhead has not been

established. The idle noise spectras for cutterheads with four and six

knives, shown in Figure 6.14, indicate the predominance of the frequency

components associated with the blade passage frequency and harmonics.
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Board Vibration Noise

The force imparted to the board by the knives occurs also at the

blade passage frequency. For straight knives this force is transmitted

to the board periodically and the resulting board vibration occurs

primarily at the blade passage frequency and its harmonics which are

near natural frequencies of the board. Since the board is supported by

the feed rollers and moves across these rollers, there are many natural

frequencies associated with the board. For this reason the board

responds well at the blade passage frequency and each harmonic frequency

of the blade passage frequency.

A narrow band analysis of typical sound pressure level and board

vibration, shown in Figures 6.15 and 6.16, indicates the presence of

the expected frequency components. As indicated, there is excellent

correlation between the board acceleration and the sound spectra.

6.4.11 Dust Hoods

The dust hood, in itself, is not a primary source of noise for the

planer. However, if not properly isolated from the machine, vibrations

can be transmitted to the hood and cause it to vibrate at or near one

of its natural frequencies and thus produce sound. The construction of

the standard hood does little to contain the noise produced directly

over the cutterhead and in some cases, cavity resonances may contribute

to the overall noise problem.

The dust hood does, however, radiate energy when struck by chips

being removed from the wood. This radiation is usually of little

importance in the total noise problem.
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Dust hoods could be designed to provide noise reduction by includ-

ing absorption material in the construction of the hood. It is essen-

tial to point out that the hood must not be connected rigidly in any

manner to the main body of'the machine.

6.4.12 Electric Motors

The three basic sources of electric motor noise are given in [12]

as; windage, electromagnetic field, and mechanical parts. High speed

electric motors often contribute to the overall machine noise problem

and, since windage noise varies approximately with the fifth power of

peripheral velocity, can be a major noise source in high-speed machines.

Windage noise results from (1) the fundamental fan blade frequency and

other fundamental frequencies of rotating parts, and (2) broadband

noise.

Broadband windage noise is characteristic of rotating electric

machinery and is generally in the frequency range of 150 to 1200 Hz.

It is produced by air turbulence as the machine fans circulate air

through the complex path of rotor, air gap, coil end turns, stator,

and enclosure.

6.4.13 Drive Train Systems

The noise produced by the drive train system associated with the

machine feed works does not contribute appreciably to the overall noise

problem. This source is usually less than idling or aerodynamic noise

provided the machine is in good mechanical condition. The major com-

ponents of the vibration spectra associated with the operation of the

feed works are low frequency with a small amplitude. The feed roll



144

system may directly affect the noise produced by board radiation

depending on the amount of vibratory energy that is absorbed or re-

flected by the feed rolls.

6.4.14 Machine Component Vibration

During machine operation, vibration due to blade impact is trans-

mitted through the machine as follows:

(1) Direct transmission through the board into the anvil struc-

ture and consequently throughout the machine.

(2) Vibration transmitted directly from the board into machine

components in contact with the board.

(3) Vibration transmitted back through the cutterhead and

throughout the machine.

To determine the manner in which various parts of the machine

respond to this transmitted vibration, an acceleration probe was con-

ducted. The accelerometer locations and maximum rms g levels recorded

are given along with an evaluation of the possible noise produced by

each component.

Anvil Structure (20g)

The portion of the energy from the cutterhead that is transmitted

directly through the board into the anvil is dissipated in the anvil

or transmitted on to other components of the machine. The mechanisms

of energy dissipation for the anvil are much the same as for the board,

being internal damping and radiation. Vibration spectra of accelera-

tion on the surface of the anvil correlate well with near field sound

pressure level spectra for the area directly beneath the anvil. This
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region is one of high sound intensity, resulting from the radiation of

sound by both the board and the anvil. The amount of anvil radiation

and frequency characteristics are dependent upon the geometry of the

anvil as well as the amount of energy transmitted from the board into

the anvil.

Feed Beds (2g)

Measurements taken on the surface of the feed beds indicate that

the beds respond only slightly to the forcing frequency components and

thus do not contribute significantly to the sound emitted.

Input Feed Roller Housing (3g)

The front housing exhibits maximum response at the lower forced

harmonic frequencies (240 and 480 Hz). The structure could possibly

radiate sound at the lower frequencies and should be isolated from

vibration or structurally damped.

Output Feed Roller Housing (2g)

At the frequencies of 1200 Hz and 1900 Hz the housing response is

maximum. Although contribution to the total sound emitted is minimal,

isolation or damping could be easily effected.

Chipbreaker Mechanism (17g)

The chipbreaker responded well only at the 480 Hz and 6000 Hz

frequencies. The limited area of the chipbreaker precludes sound

radiation at 480 Hz, however at 6000 Hz radiation is possible. The

chipbreaker, as discussed earlier, acts as a noise suppression device.
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Pressure Bar (2g)

The pressure bar is quite massive with respect to its radiating

area and responds at low g levels. The acceleration response is maxi-

mum at 240 Hz. Theoretically, the pressure bar maintains only line

contact with the board. By increasing the area of contact with the

board, the pressure bar could become effective in noise reduction.

Planer Side Housings (ig)

The right side housing (motor side) exhibits little acceleration

response, the maximum being a probable resonance well above 10,000 Hz.

The left housing responds well at 240 and 1200 Hz possibly radiating

minimal energy.

6.5 Techniques of Noise Reduction

Possible means of noise reduction for the sources identified in

Section 6.2 are presented. Special emphasis is placed on the board

and anvil structure since these are major noise sources.

6,5.1 Reduction of Noise Produced as a Result of Board Vibration

(1) Physically restrain the board from vibrating. This involves

firm contact over the entire surface area of the board.

(2) Cause the board to vibrate at frequencies above or below the

audible range.

(3) Add structural or viscous damping to the board to reduce the

portion of the energy that is dissipated as sound.

(4) Prevent the longitudinal propagation of vibratory energy

along the board by utilizing vibration suppression devices near the

cutterhead.
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(5) Enclose the area around the radiating surfaces of the board

using an acoustic absorption material.

(6) Alter the means by which vibration is induced into the board

by changing the manner in which the cutting knives contact the board.

6.5.2 Reduction of Noise Produced as a Result of Anvil Vibration

(1) Physically restrain or structurally reinforce the anvil with

due regard paid to the natural resonant frequencies of the anvil.

(2) Add structural damping to the anvil and isolate it from other

machine components.

(3) Enclose the vicinity of the anvil using acoustic absorption

materials.

6.5.3 Reduction of Noise Resulting from Other Sources

(1) Geometrically altaring the cutterhead and (or) nearby sur-

faces so as to reduce the aerodynamic noise. An acoustic enclosure

could be effective in some cases for both idle and operational noise.

(2) Reduce the noise produced by electric motors by redesign or

the installation of an acoustic enclosure utilizing forced air or other

means of cooling.

(3) Structurally damp and isolate feed beds and housings from

other machine components.

(4) Isolate the dust hood from the machine and incorporate the

hood into a partial acoustic enclosure.

6.6 Noise Control Study Areas

The three most promising techniques of major noise reduction

presented in Section 6.5 from a standpoint of short range solutions
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are (1) cutterhead redesign, (2) treatment of vibrating surfaces, and

(3) sound absorption techniques. Each of these study areas is dis-

cussed in detail and a description of practical applications to produc-

tion line wood planers is given.

6.6.1 Cutterhead Redesign

Standard cutterheads consist of a cylinder with straight knives

equally spaced around the circumference. When material is planed it is

acted on by a periodic force delivered by the cutterhead and is conse-

quently set into vibration by these periodic blade impacts occurring at

the blade passage frequency. If continuous blade contact with the

board could be maintained, the force exerted on the board would no

longer be periodic and greatly reduced vibration levels would result.

The oscilloscope trace of Figure 6.13 indicates the nature of the force

delivered to the board by each blade impact, i.e., the shape, period,

and duration of the impact pulse produced by the knives. The oscillo-

scope trace is complicated by the natural frequency of the chipbreaker

appearing as an oscillation imposed on the signal due to blade impact

alone. The time interval between the individual pulses is governed by

the number of knives and the cutterhead speed. The oscilloscope trace

indicates a pulse spacing of approximately eight centimeters, thus the

time interval between pulses = 8 cm times (.5) msec or 4.0 msec. Thecm

frequency of the pulses is found by converting from milliseconds to

cycles per second:

1000 msec
secf = = 250 Hz = 240 Hz

4 msec
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which is the expected pulse frequency. The pulse duration can also be

obtained from Figure 6.13 by estimating the width of each pulse:

msec
Pulse duration = 2 cm times 0.5 = 1.0 msec

cm

which indicates a 1000 Hz waveform. The resulting pulse is seen to

resemble a square waveform of one millisecond duration and four milli-

seconds spacing. This information is useful in arriving at the proper

signal to be used in experimental arrangements. The actual force de-

livered to the board is of the form as shown in Figure 6.17. The

applied force is seen to vary with time, resulting in board vibration.

The ideal situation would be the case where the force is applied

to the board in a constant manner. The time rate of change of the

force would become zero and the board would no longer undergo steady

state vibration. The applied force history would then be represented

by Figure 6.18. Two methods by which the present situation as shown in

Figure 6.17 could be changed to conform more closely with the ideal

situation shown in Figure 6.18 are (1) increase the duration of the

shock pulses to effectively smooth out the curve of Figure 6.17, and

(2). increase the frequency at which the pulses in Figure 6.17 occur to

obtain a smoother curve.

These methods may be combined to some degree to obtain a force

history that approximates the ideal case of Figure 6.18. The frequency

of the pulses is equivalent to the blade passage frequency and may be

increased by increasing the number of knives on the cutterhead or the

cutterhead RPM. The duration of the pulse shown in Figure 6.17 is
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dF(t)
dt

4 -

U-

TIME (MILLISECONDS)

Figure 6.17 Waveform of Force Delivered to the Board for

the Standard Cutterhead

dF(t) -0
dt

-

TIME (MILLISECONDS)
F(t)=APPLIED FORCE

Figure 6.18 Force Delivered to the Board for the Ideal Case
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governed by the time span that each blade is in contact with the board.

For the special case of a helical or wound blade, blade contact with

the board and thus the force input would be maintained constant. For

a true helix the force-time history would be that of Figure 6.18 and

the ideal case would be achieved.

A semi-helical (segmented) cutterhead,shown in Figure 6.19,con-

sisting of several knives wrapped on the cutterhead forming partial

helices, has provided significant noise reduction. This special cut-

terhead provides a means of more constant contact between the knives

and the board. However, the machines tested utilizing the segmented

heads produced sound and vibration spectra that indicated the presence

of a blade passage frequency, which was due to the deviation of these

heads from the ideal true helix. The improvement provided by these

heads is evident in both idle (aerodynamic) noise and operating (forced

board vibration) noise. Noise level reductions in the neighborhood of

ten decibels are possible for machines equipped with the segmented

heads. The effectiveness of a particular segmented head design has

been evaluated experimentally. A comparison of noise spectra between

the four blade semi-helical arrangement and the standard straight knife

cutterhead, shown in Figure 6.20 indicates a reduction in the frequency

components centered above 500 Hz. A similar reduction in the acceler-

ation spectrum is also observed. The improvement obtained is due

primarily to the deviation from the purely periodic excitation, result-

ing in reduced resonant response of the board.

Although blade impact characteristics are changed somewhat for the

segmented cutterhead, a passage frequency is still evident in the noise



iS'~ j 4"

x

fq '4.

1i 44 '-a I-s
- / a

f~i a

.. , Ii~" .--- ;--

'-: - -.- I :...

: -j- \~ -:~ 4%^

L x ~i 
__________. _~1-..'"~;" r" "~

Figure 6.19 Segmented Cutterhead



- -7-STANDARD CUTTERHEAD
. ---- SEGMENTED CUTTERHEAD --

M 100 -: 1- i_ 1_ .T_ :- -/ _- _1-- 11: i: - l " III -I-

80--.- --. 3------ --

S70- - BOARD LENGTH= 6

.90... .

63 100 160 250 400 630 1.0K 1.6K 2.5K 4.0K 6.3K 10K 16KdBA dB THIRO-OCTAVE-BAND CENTER FREQUENCY IN Hz

Figure 6.20 Comparison of Sound Pressure Spectra for Operation

with Segmented (Helical) and Standard Cutterheads

Ln
U)



154

and vibration spectra. Predominant frequencies for the four blade

segmented arrangement were again 240 times n (n = 1,2,3...), since

blade contact was not maintained constant over the entire width of the

board. The origin of this periodic excitation is a combination of two

factors, being (1) the mismatch that occurs when the individual segments

are combined to form the cutterhead, representing a deviation from a

true helix; and (2) the "loose" helix angle that is utilized and the

resultant lack of constant contact.

6.6.2 Treatment of Vibrating Surfaces

The treatment of vibrating surfaces includes techniques for damping,

absorbing, and reflecting vibratory energy. Each of these techniques

have been studied experimentally.

Structural Damping

Energy dissipation through internal damping of vibrating struc-

tures is an important means of energy removal and has been experimen-

tally investigated by (1) adhering a damping agent directly to the sur-

face of the board and (2) applying a damping material to the surface

of the feed beds and anvil structure. The addition of a damping

material directly to the surface of.the vibrating board was accomplished

by cementing rubber strips onto the face of the board which was not

being planed. The result of providing the board with an alternate

means of energy dissipation was a decrease in the radiated noise levels

of six to ten decibels. The significant reduction in noise level ob-

tained by structurally damping the board indicated the dominance of

board vibration as the mechanism of sound generation. The noise
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reduction obtained as well as the frequency range affected by the

damping is shown in Figure 6.21 which compares the noise reduction ob-

tained for the treated board with the noise produced by an untreated

board. The range of effectiveness of the damping agent (1000 to

3000 Hz) depends upon the thickness and consistency of the rubber damp-

ing material.

The effect of structural damping on board radiation led to experi-

ments designed to determine the effectiveness of a damping layer applied

directly to the anvil and feed beds to accomplish damping of the board.

The addition of damping material to the feed beds and anvil resulted in

only slight noise reductions at the operator position. The lack of

firm contact between the board and the damping agent was primarily re-

sponsible for this limited success. Friction effects made it impracti-

cal to perform measurements on the treated side using hold-down mecha-

nisms on the board.

Although the damping agent applied to the machine surfaces had

little effect on the sound radiation in the far field, there was a

substantial effect on anvil vibration. Acceleration levels were re-

duced from 20g for the untreated side to 4g for the treated portion,

with pronounced reductions at probable anvil resonant frequencies,

Three damping agents were utilized for damping tests made on the

anvil structure, the most effective and practical being the constrained

layer or sandwich type. This treatment consisted of a layer of visco-

elastic polymer covered by a thin sheet of steel mounted on the upper

face of the anvil. Structural damping of the anvil, and possible shear

type damping of the board, was achieved using the constrained layer

damping.
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The bar graph of Figure 6.22 shows the effect of each damping

agent tested on the resulting anvil vibration (g) level. The neoprene

and constrained layer type damping were the most effective, reducing

the level approximately 15g from the untreated level. Theoretically,

damping treatments are effective methods for reducing board and machine

component vibration and the corresponding contribution to the total

noise. Friction, excessive sensitivity to temperature, and wear

problems make damping treatments difficult to apply in practice.

The effect of adding constraint mechanisms to physically restrain

the board from moving (vibrating) at the point of application has been

investigated. A constraint, such as a feed roller, may influence board

vibration by:

(1) Acting as a simple line constraint having no effect on the

magnitude of the vibration transmitted beyond it. The modes of board

vibration adjust so that a nodal point situates itself at the point of

constraint. A number of constraints placed along the feed beds

effectively raise the frequency of vibration and thus the frequency

of the sound produced.

(2) Acting as barrier to outward propagating vibration and

effectively decreasing the dynamic board length. To achieve this con-

dition a massive contact with the board is required, applied over a

large area.

(3) Acting as an energy absorber at the point of contact. The

chipbreaker mechanism exhibits this effect to some degree.

The conventional steel input and output feed roller mechanisms

used on planers act primarily as a simple line constraint described in
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paragraph (1). Less conventional feed rollers constructed of rubber

could well exhibit the properties discussed in paragraphs (2) and (3)

and be valuable in dealing with planer noise.

For experimental purposes, a foam filled rubber tire and steel

plate arrangement was designed to perform the previously cited func-

tions to some degree, i.e., tend to (1) attenuate outward propagating

vibration by reflecting the vibratory waves, and (2) absorb energy by

virtue of the foam filled rubber tire and thus reduce the energy dis-

sipated as sound. With moderate force exerted, the tire deflects form-

ing a tire flatness, which is quite effective in attenuating the spread

of vibratory energy beyond the tire-plate. The tire itself also ab-

sorbs considerable vibratory energy. Sound pressure level and acceler-

ation measurements were made on the portion of the board extending

beyond a particular tire-plate suppressor. An acoustic enclosure was

utilized to reduce the sound eminating from the inner portion of the

board to levels well below the signal of interest. Figure 6.2, dis-

cussed previously, shows the experimental arrangement with the board

being excited by a mechanical vibrator with a square wave input. The

vibration insertion loss was detected by accelerometers located on

either side of the tire-plate system. An 18 dB insertion loss was

obtained with moderate loading of the tire and a similar 18 dB reduc-

tion in noise level was observed.

Such a tire-plate system can be easily installed on existing

roughing and cabinet type planers or incorporated into the feed works.

In conjunction with a moderate size acoustical enclosure, a tire-plate

suppression system has reduced noise levels in excess of 15 dBA in
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industrial applications. Considerable work remains to be done in this

area, especially concerning the physical aspects of the tire in regard

to energy absorption.

6.6.3 Acoustic Enclosures

One means of obtaining substantial noise reduction for the planer

is the installation of a total or partial acoustic enclosure. For most

planing operations the acoustic energy radiated is concentrated between

500 and 5000 Hz. In this frequency range, a combination of absorbing

material and a housing of moderate stiffness and mass provides excellent

attenuation when the source is totally enclosed. The planer, however,

must have an area left open for input and output operations. Since

these "holes" greatly decrease the effectiveness of an enclosure, the

area of the opening must be minimized with respect to the total en-

closed area for maximum enclosure benefit. The adverse effect of the

opening also depends to a large degree on the frequency of the sound

energy being contained and absorbed within the enclosure. A guide to

the effectiveness of an enclosure that can be expected with respect to

opening sizes and acoustical absorbing surface area is given by (33]

and is repeated in Table 6.2.

An enclosure composed of several segments was used to evaluate the

maximum noise reduction obtainable for an enclosure having minimal

openings for feed purposes. The relative importance'of each section of

the enclosure was obtained by systematically removing and replacing

various sections. Photographs of the enclosure are shown in Figure 6.23.

Since the total length of the enclosure was equal to the length of the

machine, the board length became increasingly important. The amount of
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Table 6.2 Noise Reduction for Acoustically Lined Plywood Enclosures

with Untreated Openings

Noise Reduction (dBA)
Hole Area Fiberglass Treated Plywood Thickness

(% of Total Area) Area (%)
1/2" 3/4" 1"

.1% 25% 13.0 18.0 20.0

50% 16.0 20.0 23.0

75% 18.0 23.0 25.0

100% 19.5 24.0 27.0

1% 25% 10.0 14.0 14.0

50% 13.0 17.0 17.0

75% 15.0 18.5 18.5

100% 17.0 20.0 20.0

5% 25% 7.0 9.0 9.0

50% 10.0 13.0 13,0

75% 11.5 14.0 14,0

100% 13.0 15.0 15.0

10% 25% 5.0 5.0 5.0

50% 8.0 8.0 8.0

75% 9.0 9.0 9.0

100% 10.0 10.0 10.0
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absorption obtainable was dependent upon the portion of the board that

was enclosed at any instant of time. Since vibrational energy spreads

through the board, the noise level at the operator position is dependent

upon the percentage of the board that is within the enclosure. Noise

levels for boards of length less than the machine length were signifi-

cantly reduced, while the reduction for locnger boards was considerably

less. Boards whose length exceeded the length of the enclosure pro-

duced sound levels which varied with the position of the board with

respect to the enclosure. The sound levels were noted to steadily de-

crease as the longer boards submerged into the enclosure until the

leading end of the board began to emerge from the output side of the

planer.

The effectiveness of the enclosure decreases with increasing board

length as shown in Figure 6.24. For boards of length greater than three

feet, the noise level varied with position as indicated in Figure 6.25,

In order to evaluate the relative importance of each section of

the enclosure, measurements were taken with different sections removed.

Figure 6.26 shows the reduction in noise level for two and six feet

long boards as the various sections of the enclosure are added. The

directivity characteristics, shown in Figure 6.27, remain essentially

the same for operation with and without the acoustic enclosure. Direc-

tivity characteristics, shown in Figure 6.28, for different board widths

would be expected to maintain a similar relationship for operation with

the acoustic enclosure.
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7. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

The important result obtained in the development of a model for

board vibration for the special case of a periodic forcing function was

given by equation (4.50) as

2 c sin(nux/z)sin(nrxo 1) 17
Y(x,w) = 2 2

Pb n=l wn 2  (1-(w/nW)2 +2

S Ao(Jo )6(w-jw ) (7.1)

for the response in the frequency domain. The response at each fre-

quency (j o) is seen to be weighted by the frequency response function

of the beam. Thus the frequency spectrum of board vibration for the

planer is a discrete spectra with peaks occurring at each harmonic of

the blade passage frequency with the amplitude governed by the nearness

of these forced frequencies to natural resonant frequencies of the

board. Figure 3.6 indicates the close agreement of the vibration spec-

tra of the board with that predicted by equation (4.50). The excellent

correlation of the sound and acceleration spectra shown in Figures 6.15

and 6.16, indicates the importance of board radiation as a noise gener-

ation mechanism as well as bearing out the theory for cutterheads having

four and six knives.

The important experimental result of a six decibel increase in

overall radiated sound power per doubling of board width was formulated

in terms of a source strength parameter. This source strength was

determined to be proportional to board width near the critical frequency
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resulting in equation (6.3) for the sound power level proportionality,

i.e.;

LW n 10 log (Qs)2 , 20 log(W) (7.2)

Figure 3.7 illustrated this increase along with experimental values

of radiated sound power.

For frequencies near the critical frequency, where the sound

radiation is concentrated, the piston model of Chapter 5 gave the sound

power output as

L= 10 logl 0 (W2) + 20 logl 0 (fo)

-2+ 10 loglo(<Vo>) - 10 logl0(f)

+ 10 logl 0(r a/2Po) (7.3)

In the immediate vicinity of the critical frequency equation (7.3) can

be.written in terms of the proportionality;

L (f=f c) = 20 logl0(W)  (7.4)

Thus, the theoretical acoustic power produced is also observed to

depend primarily on beam width and increases six decibels for each

doubling of width.

The experimental values obtained for the radiated sound power

level (overall), given in Figure 3.7, were obtained by measuring the



171

average sound pressure level over a hypothetical hemispherical surface

and accounting for the particular environment in accord with [11]. The

contributions to the radiated power occur at the blade passage frequency

and harmonics, with the major contributions being near the critical fre-

quency.

In Section 5.5.2 the actual radiated power for the four and eight

inch beam widths was computed. Contributions from the third, fourth,

fifth, and sixth harmonics were totaled to obtain the overall sound

power level. These levels were then adjusted according to [11] to give

the following values for the average sound pressure level at a five

foot radius;

L (W = 4) = 101 dB

L (W = 8) = 107 dB

which are in good agreement with the experimental results

L (W = 4) = 99 dB

L (W = 8) = 105 dB
P

measured five feet from the machine centerline. The theoretical

accuracy could be improved by obtaining an exact measure.of the

-2
quantity £<V0> which was assumed to be unity in this example.0
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8. SURMARY AND CONCLUSIONS

Several sources of planer noise have been identified, the major

sources being board vibration, rotational noise, and anvil vibration.

For most planers the board -radiation dominates as evidenced by the six

decibel increase in noise level per doubling of board width and the

excellent correlation between the sound and board vibration spectra.

The board length did not directly affect the radiation since the energy

is distributed along the length of the board. The energy input to the

board by the cutterhead is independent of board length but increases

with increasing board width.

The vibration model developed in Chapter 4 is valid strictly for

slender beams. The transition from a beam to a plate is generally

defined to occur when W/Z > 1/10. The model is valid for board widths

up to about one foot, which is usually the case for roughing planers.

Panels (W/k > 1/10) can be analyzed by a similar modal approach, allow-

ing for vibration parallel as well as perpendicular to the cutterhead.

Special attention was given to the case of periodic forces since this

is typical of most cutterheads. The vibration model serves as a guide

to cutterhead design since the relationship of the forced harmonics to

the beam resonances governs sound radiation near the critical frequency.

Non-periodic forcing functions obtained by shear type cutterheads can

also be compared with standard heads on a vibration basis.

The radiation model developed in Chapter 5 combines the phase cell

concept of structural vibration in terms of the critical frequency with

the classical radiation theory for rectangular pistons. This rectangu-

lar model is simplified to a square piston in most cases. The radiated



power was given by equation (5.13) as P = Rrad <2> where the radia-

tion resistance is dependent on the "Ka" factor, the structural area,

and constants of the medium. The velocity term is a mean-square space-

time average which, in a reverberant vibrational field, is assumed to

have the same average properties for each piston element.

In order to represent the radiated power by equation (5.13), the

modes are assumed to be excited by a random noise in a narrow bandwidth.

Aw centered on frequency w, and the space-time average transverse

velocities of the modes within the band are assumed to be equal. The

equation governing the pure-tone response of any single mode can be

written as the product (Z V m), where Z is the sum of the mechanicalmm m

and radiation impedances. The mechanical impedance is the impedance

of the simple resonator that represents one natural mode of the struc-

ture in vacuo. In the derivation of equation (5.13) for the radiated

sound power, small forces arising from internal dissipation and from

sound radiation pressure that could tend to couple the response of

modes were neglected.

The baffled piston radiation properties were extended in an

approximate manner to apply to the case of an unbaffled piston by using

an analogy with a freely suspended disk. Expressions for the radiation

resistance were obtained in three frequency ranges for both baffled and

unbaffled beams. The velocity term to be used in equation (7.3) was

approximated using energy methods valid for reverberant fields rather

than the more complex expressions of Chapter 4.

The radiation model consolidates and extends existing theory by

using the radiation properties of a rectangular piston exclusively.
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The important result that the major contribution to the radiated sound

power is concentrated near the critical frequency for wide boards and

spread out for narrower boards is apparent in the simple piston model.

The piston model exhibits the important theoretical trends of the

complex model of Section 5.4.3, while allowing quite simple computa-

tions of the radiated sound power.

The physical parameters such as board width, critical frequency,

and board length-velocity product are easily observed from the piston

model. The six decibel increase per doubling of width is explained in

relation to the power controlling critical frequency. There was good

agreement with experimental power measurements.

The experimental study defines the effect of various sources and

parameters on the noise emitted in a manner which can be directly

applied to future machine design. The major source of planer noise

was determined experimentally to be board radiation caused by the

periodic impact of the cutterhead knives. Board width was found to

affect the sound levels by an increase of six decibels per doubling of

board width, which indicates the dependence of source strength upon

width.

The length of the board did not directly affect the noise levels

but had a pronounced effect on vibration level. The vibration levels

decreased with increasing board length indicating a spreading out of

vibratory energy. Board length did, however, become quite important

when an acoustic enclosure was utilized since an enclosure is effective

only for that portion of the board that is contained within the enclo-

sure. Thus, longer boards produced greater noise levels at the
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operator position. For this reason enclosures of the type discussed

offer only limited noise reduction, the amount depending on the size

of the enclosure and the length of the boards being planed.

The most promising means of noise reduction are; (1) cutterhead

redesign, (2) vibration suppression, and (3) acoustic enclosures. .Each

of-these areas have been studied in detail and significant improvements

realized.

In general there has been excellent agreement between the theoreti-

cal and experimental results. Many of the concepts developed have been

tested experimentally and successfully implemented on production line

machines. The progress that has been made toward understanding the

mechanism of noise generation in planing operations can be extended

readily to other woodworking machinery.
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9. RECOMMENDATIONS

The entire vibration model and phase cell concept of board

radiation can be extended to plates, which are typical of panels in

the woodworking industry. This study was not pursued since the noise.

emission from most panels can be controlled by an enclosure in the

vicinity of the cutterhead (most panels are less than four feet long).

Additional study is needed in the area of cutterhead redesign,

since the exact effect of knife sharpness, helix angle, segmented knife

overlap, cutterhead speed, and cutterhead geometry on operational noise

levels is not known, although the results indicate that the ideal case

is that of a true, tightly wound, helix.

The vibration suppression techniques have not been analyzed in

detail in regard to the factors affecting the reflection, transmission,

and absorption of vibratory energy. The tire system could possibly be

designed to act as a dynamic vibration absorber which would absorb

energy over a wide frequency range, and thus substantially reduce the

noise output from the board. Modern day, high energy absorbing,

polymers could-possibly be used in an energy absorbing capacity, or

incorporated into tire construction.

Long range study areas include such revolutionary changes as the

use of laser beams to do many of the noisy and unsafe operations in

the woodworking industry with a significant reduction in waste and

waste products.
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11. LIST OF SYMBOLS

A Radiating surface area of vibrating structure

Acc. Acceleration

A Fourier coefficient in series expansion of waveform
0

A Area of reflecting room surfaces
r

a Characteristic dimension of radiator

a Reference acceleration
o

<a> Space-time averaged acceleration

BPF Blade passage frequency

b. Dimension of radiator

SOne-half the vector distance between monopole sources located

on each piston face

C Speed of sound in air

CB  Transverse bending wave.velocity

C Generalized damping coefficient for the nth mode of beam
n

vibration

c(x) Viscous damping coefficient.

d Length of rectangular piston element

dB Decibel

E Modulus of elasticity

ET Total stored vibrational energy

F(x,t) Beam excitation function

F(x,w) Fourier transform of F(x,t)

F { } Denotes Fourier transform operation
e-

F { } Denotes inverse Fourier transform operation
e
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FR  Beam radiation loading function

f Frequency in-Hertz

fc Critical beam frequency

fh Harmonic.frequencies present in.excitation signal

fn(x) Mode shape of beam vibrating in the nth mode

g Unit of measure for acceleration

gc. Acceleration due to gravity

H n() System frequency response function

H Hertz (cycles per second)

h System response to a unit-impulse

I- Area moment of inertia of beam cross section

i. v:T

J Zero order Bessel function

J1 First order Bessel function

j Integer

K Acoustic wave number =.w/Ca
Ka Dimensionless product governing radiation

Kb Dimensionless product governing radiation

Kd  Structural wave number = w/CB

K Generalized stiffness coefficient for nth mode of beam.

vibration

Ln(x,t) Generalized force corresponding to the nth mode of beam

vibration

Ln(x,w) Fourier transform of L (x,t) with respect to time

L Sound pressure level, referenced to 0.0002 pbar

Lp Space average of sound pressure levels
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LW Sound power level, referenced to 10- 13 watts

a Beam length

M Total mass of beam

Mn  Generalized mass corresponding to the.nth mode of beam

vibration

my. Millivolts

N Number of knives on cutterhead

N Number of contributing piston elements

n Integer

Pa Acoustic power radiated to the far field

P Reference.acoustic power, taken as 10-13 watts

n(w) Fourier transform of qn(t)

Qs Acoustic source strength

qn(t) Generalized coordinate corresponding to the nth normal

vibrational mode

R Room constant

Re{ I Denotes real part of quantity to be taken

RPM Revolutions per minute

R Radiation resistancerad

r Radius of radiating disk

S Surface area of baffled beam = W£

Sf System input power spectral density

SH  Surface area of test hemisphere

S System output power spectral density

T Period of signal

t Real time
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tb  Beam thickness

tbo Reference beam thickness

t Instant of time0

V- Transverse.beam velocity

V Reference beam.velocity

<V2> Mean-square transverse beam velocity

W Width of beam orpiston element

Wo  Reference width of beam or piston element

x Coordinate along beam length

xo  Specific position along x,coordinate

Y(x,w) Fourier transform of.y(x,t) with respect to time

y. Coordinate perpendicular to beam length

y(x,t) Transverse displacement of beam

Z Radiation impedance

aAcoustic absorption coefficient

8 Coefficient typical of particular type of boundary conditions

6 Dirac delta function

6 Internal damping coefficient

SDamping factor

En Damping factor for the nth vibrational mode

na. Acoustic loss factor

nd Dissipation loss factor

8 Radiation efficiency function for square piston

83 Radiation efficiency function for rectangular piston
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Aa Acoustic wavelength

x ns Modal.structural wavelength

x Structural wavelength

p Mass density

Pa Mass density of air

Pb Mass density of beam.

pc Specific acoustic impedance

a Radiation efficiency

T Time variable used in conjunction with convolution integral

0 Cross sectional area of beam

W Angular frequency

Sn. Natural vibrational frequency

At Small frequency increment centered on frequency w

C() Denotes differentiation with respect to time

(') Denotes second derivative with respect to time

( ) Denotes differentiation with respect to x
It

( ) Denotes second derivative with respect to x

Denotes convolution operation

Indicates the radiation resistance should be multiplied by a

factor of one for the baffled radiator and a factor of two

for the unbaffled radiator




